Basic Statistics
2026年01月15日
Basic Statistics
Expected Value
E[X]=∑P(X=xi)xi
Variance
σ2=E[(X-μ)2]
σ2=E[X2]-(E[X])2
Covariance
Cov[X,Y]=E[(X-E[X])(Y-E[Y])]
Cov[X,Y]=E[XY]-E[X]E[Y]
Correlation
![]()
Sums of Random Variables(https://www.daowen.com)
● If X and Y are any random variables:E(X+Y)=E(X)+E(Y)
● If X and Y are independent:
Var(X+Y)=Var(X)+Var(Y)
● If X and Y are not independent:
Var(X+Y)=Var(X)+Var(Y)+2Cov(X,Y)
Skewness& kurtosis
![]()
Positive skewness:Mode<Median<Mean
Negative skewness:Mode>Median>Mean
![]()
Excess kurtosis=sample kurtosis-3