动力机械

机械运用篇

农业机械

在作物种植业和畜牧业生产过程中,以及农、畜产品初加工和处理过程中所使用的各种机械。农业机械包括农用动力机械、农田建设机械、土壤耕作机械、种植和施肥机械、植物保护机械、农田排灌机械、作物收获机械、农产品加工机械、畜牧业机械和农业运输机械等。广义的农业机械还包括林业机械、渔业机械和蚕桑、养蜂、食用菌类培植等农村副业机械。

农业机械的起源可以追溯到原始社会使用简单农具的时代。在中国,早在新石器时代的仰韶文化时期(约公元前5000~前3000年)就有了原始的耕地工具———耒耜。公元前13世纪就已使用铜犁头进行牛耕。到公元前8~前3世纪的春秋战国时代,已经拥有耕地、播种、收获、加工和灌溉等一系列铁、木制农具。公元前90年前后,赵过发明的三行耧,即三行条播机,其基本结构至今仍被应用。到9世纪已形成结构相当完备的畜力铧式犁。在《齐民要术》(约540年)、《耒耜经》(约880年)、王祯《农书》(约1310年)、《天工开物》(1637年)等古籍中,对各个时期农业生产中使用的各种机械和工具都有详细的记载。在西方,原始的木犁起源于美索不达米亚和埃及,约公元前1000年开始使用铁犁铧。19世纪至20世纪初,是发展和大量使用新式畜力农业机械的年代。1831年,美国的麦考密克创制成功马拉收割机。1936年出现了第一台马拉的谷物联合收获机。1850~1855年间,先后制造并推广使用了谷物播种机、割草机和玉米播种机等。20世纪初,以内燃机为动力的拖拉机开始逐步代替牲畜,作为牵引动力广泛用于各项田间作业,并用以驱动各种固定作业的农业机械。20世纪30年代后期,英国的弗格森创制成功拖拉机的农具悬挂系统,使拖拉机和农具二者形成一个整体,大大提高了拖拉机的使用和操作性能。由液压系统操纵的农具悬挂系统也使农具的操纵和控制更为轻便、灵活。与拖拉机配套的农机具由牵引式逐步转向悬挂式和半悬挂式,使农机具的重量减轻、结构简化。20世纪40年代起,欧美各国的谷物联合收获机逐步由牵引式转向自走式。20世纪60年代,水果、蔬菜等收获机械得到发展。自20世纪70年代开始,电子技术逐步应用于农业机械作业过程的监测和控制,逐步向作业过程的自动化方向发展。

中华人民共和国成立初期,广为发展新式畜力农具,如步犁、耘锄、播种机、收割机和水车等。20世纪50年代后期,中国开始建立拖拉机及其配套农机具制造工业。洛阳第一拖拉机厂于1959年建成投产。1956年,中国首先在水稻秧苗的分秧原理方面取得突破,人力和机动水稻插秧机在20世纪60年代中期相继定型投产。1965年开始生产自走式全喂入谷物联合收获机,并从1958年起研制半喂入型水稻联合收获机,到70年代中期有十几种产品定型,少数机型进行小批生产。1972年创制成功的船式拖拉机(机耕船),为中国南方水田特别是常年积水的沤田地区提供了多种用途的牵引动力。到1984年底,全国(除台湾省外)大、中型拖拉机保有量达到85.4万台,小型和手扶拖拉机达到329.8万台,农业用汽车达到35万辆,农用排灌动力机械达到615万台,农用水泵达到515.7万台,大、中型拖拉机配套农机具达到123.5万部,小型和手扶拖拉机配套农机具达到291.8万部,谷物联合收获机达到35861台,饲料粉碎机达到113.9万台,磨面机、碾米机、轧花机和榨油机共388.1万台,农用动力总功率达1.95×108千瓦。1984年,机耕面积达5.24亿亩,占耕地面积的39%。机电灌溉面积达3.76亿亩,占灌溉面积的56.4%。

农业机械一般按用途分类。其中大部分机械是根据农业的特点和各项作业的特殊要求而专门设计制造的,如土壤耕作机械、种植和施肥机械、植物保护机械、作物收获机械、畜牧业机械以及农产品加工机械等。另一部分农业机械则与其他行业通用,可以根据农业的特点和需要直接选用,如农用动力机械、农田排灌机械中的水泵等;或者根据农业的特点和需要把这些机械设计成农用变型,如农业运输机械中的农用汽车、挂车和农田建设机械中的土、石方机械等。

农业机械还可按所用动力及其配套方式分类。农业机械应用的动力可分为两部分:一部分用于农业机械的行走或移动,据此可分为人力(手提、背负、胸挂和推拉)、畜力牵引、拖拉机牵引和动力自走式等类型;另一部分用于农业机械工作部件的驱动,据此可分为人力(手摇、脚踏等)驱动、畜力驱动、机电动力驱动(利用内燃机、风力机、电动机等)和拖拉机驱动等类型。在同一台农业机械上,这两部分可以使用相同的或不同的动力。按农业机械与拖拉机的配套方式,可分为牵引、悬挂和半悬挂等类型。

按照作业方式,农业机械可分为行走作业和固定作业的两大类。在行走作业的农业机械中,又有在连续行进过程中作业的连续行走式和行进与作业过程交替进行的间歇行走式两类。在固定作业的农业机械中,则有在非作业状态下可以转移作业地点的可移动式和作业地点始终固定的不可移动式两类。

按照作业地点,农业机械分为野外作业(田间、牧场和果园等)、场院作业、室内作业(厂房、机房、库房、温室和禽畜舍等)、水中或水上作业(河流、渠道、水库和水井等)、道路作业和航空作业等类型。

林业机械

用于营林(包括造林、育林和护林)、木材切削和林业起重输送的机械。广义的林业机械还包括木材加工机械、人造板机械和林产化工设备等综合利用机械。林业机械大多是在移动情况下进行露天作业,因受自然条件的影响而具有一定的区域性。林业机械对于加快绿化速度、扩大森林资源和促进生态系统良性循环都有重要意义。

机械在林业生产中的使用始于木材搬运。1892年,第一台拖拉机在美国问世后很快在林区获得应用,但由于不适应林区复杂的自然条件,效率较低。19世纪后期,仿效采矿工业,在林区开始使用铁轨道、木轨道和简易车辆搬运木材。20世纪初,森林铁道开始用于木材运输。1913年,美国制成蒸汽机集材绞盘机,1914年德国制成第一台双人用动力链锯。从此林区开始用动力锯锯木和用绞盘机拖集木材。20世纪40年代末期,前苏联制造出履带式集材拖拉机。1957年,第一批四轮驱动、折腰转向的轮式集材拖拉机问世,因速度快、重量轻、耗油少、效率高而获得迅速发展。20世纪50年代末期,各主要林业国都实现了木材生产机械化。20世纪60年代以来,随着汽车工业和林区道路网的发展,汽车运材逐渐取代费用昂贵的森林铁道运材。运材汽车发展成为具有随车液压起重臂的自装集运材汽车,并与拖车组成汽车列车。20世纪60年代后期出现的伐区作业联合机,是木材生产机械化的重大发展。

营林机械因为林木生产周期长、作业条件复杂和投资大、收益慢的缘故发展缓慢。1888年,在美国出现第一台植树机,因结构不够完善,未能普遍使用。20世纪20年代前后,德国生产的林业整地机械开始由畜力牵引过渡到拖拉机牵引。40~50年代,前苏联因大面积营造防护林的需要,设计制造了多种营林机械。20世纪70年代以来,由于人工造林日益受到重视,营林集约化程度提高,营林机械的发展才逐步加快。

20世纪50年代初,中国为营造热带经济林和东北防护林,开始引进履带拖拉机、植树机、幼林抚育机等营林机械,并引进动力链锯、集材拖拉机和绞盘机等木材生产切削机械和林业起重输送机械。

营林机械包括种子采集和处理、林地清理、整地、育苗、中幼林抚育和林木保护等作业用的机械。其中常用的有采种机、割灌机、挖坑机、筑床机、插条机、植树机等。

一、振动采种机

用振动方法采种的机械。因树木的果实和种子形态大小差别很大,树木生长的地形条件也大不相同,多年来采种人一直使用上树机具,如上树脚扣、上树梯和升降机等。20世纪70年代出现振动采种机。它的工作装置安装在拖拉机或其他行走或动力机械上,用油马达驱动振动头,产生振落效果而不损伤采种树。采集的球果或种子再经处理机械进行干燥、脱粒、去翅和清选。

二、割灌机

造林和抚育幼林用的机械,可用于林地清理、幼林抚育、次生林抚育与间伐、割灌木、割草和伐小径木,是小型轻便的机械。一般可分为侧挂式和背负式。①侧挂式割灌机:又称硬轴割灌机,其结构是在长约1.5米的套有铝合金套管的传动轴一端配置0.75~1.85千瓦的汽油机和离合器,另一端安装由减速器和圆锯片(或刀片)组成的工作头。机具侧挂在操作者肩下,挥动装有手柄的传动轴,高速(4500~5000转/分)旋转的刀具即能切割灌木、杂草。以尼龙绳代替刀具亦能割草。②背负式割灌机:又称软轴割灌机。旋切刀具由软轴传动,对地形的适应性较前者为好。在割灌机上增设一些附属装置和设备,还可用于收割稻麦、抽水、钻孔、磨锯齿等,实现一机多用。

三、挖坑机

山地和丘陵地区造林整地的主要设备。分为拖拉机悬挂式和手提式。①拖拉机悬挂式挖坑机:分为机械传动和液压传动两类。前者由拖拉机动力输出轴经传动轴、减速器驱动螺旋钻头旋转而挖坑,后者由液压系统驱动油马达带动钻头旋转。挖坑直径通常为50~80厘米。②手提式挖坑机:它由小型汽油机、减速器、离合器和螺旋钻头组成,机重10~15千克,两人或一人操纵。挖坑直径通常为15~35厘米。

四、筑床机、插条机和起苗机

主要用于苗圃育苗。①筑床机:常见的有拖拉机悬挂式筑床机,由机架、卧式旋耕器、左右步道犁和整形器等组成,能同时完成整地、筑床两道工序。②插条机:又称插穗机。常见的抛射式插条机由拖拉机牵引,由机架、地轮、传动装置、供条装置、分条装置、运条装置、开沟压实装置和贮条箱等组成。穗条经分条、运条装置送至一定高度,借惯性作用被抛入导穗槽,沿槽下滑至距地面约25毫米处时以约4米/秒的速度抛射至开沟器开出的栽植沟,随即由压实轮压实插穗周围的土壤。③起苗机:多为拖拉机悬挂式,由固定在机架上的U型刀和抖土器组成、底刀和侧刀从要求的深度切开苗木根部的土壤并将苗木挺起,动力输出轴驱动的螺旋抖土器抖落在苗根上的土壤。

五、植树机

机械化植树造林的主要设备,多与拖拉机配套使用。植树机分为连续开沟式、间断开沟式和选择挖坑式3种。①连续开沟式和间断开沟式植树机:工作时,开沟器切开、破碎和推移土壤形成连续(或间断)的栽植沟。苗木按规定的栽植深度和株距被栽入沟内,覆土压实轮随即推拥苗木周围的土壤并压实。用人工分苗、植苗的称简易植树机,使用广泛;人工分苗而以相应机构植苗的称半自动植树机;不需要人辅助而完成植苗全部动作的称自动植树机。苗木预先按一定间隔装在塑料带上并卷成捆(或排放在多层有凹槽的苗盒内)。植树时,苗捆(或苗盒)装在机架的相应机构上,由与植苗装置联动的递苗机构将苗捆或苗盒内的苗木递给植苗装置而栽入沟内。②选择挖坑式植树机:这种植树机出现于20世纪70年代,其结构原理与连续开沟式和间断开沟式大不相同,植苗员可在适宜栽植的点上操纵植树器挖坑植树,从而提高了机器的机动性和对不同地面的适应性。

探矿机械

在坑探和钻探两类探矿作业中使用的各种机械设备。广义地说,探矿机械属于矿山机械的一类。坑探是在松散深积物、岩石或矿体中挖掘一定断面积的坑道,以了解地质情况的作业。主要使用的是凿岩机和出渣用的装卸机械。钻探是用钻机在岩石或矿体中钻出圆形孔洞,取得岩心或岩样,以了解深处地质情况。所钻孔径一般在150毫米以内,个别可达300毫米,深度可达3000米。钻机能把孔底的岩石破碎成粉,并由通过钻杆送到孔底的循环液冲出,或者用套料的方法在矿岩中破碎出一个环状外圈而保留中心的柱状岩心。随着钻孔延伸,岩心不断进入岩心管内。通过提升或其他方法将岩心卡断并带到地面。排出的岩粉或岩心,是最终探明矿床储量和质量的重要依据。

一、回转钻机

坑探作业中广泛使用的钻机。根据矿岩性质不同,可分别使用硬质合金钻头、金刚石钻头或钻粒钻头等。钻头借助钻机给钻杆的轴向力和回转力作用破碎孔底矿岩。根据带动钻杆(钻头)旋转的回转器不同,钻机分为回转式立轴钻机和回转式钻盘钻机。

回转式立轴钻机:适用于金属或非金属勘探,它的工作特点是钻取岩心。它还按钻探深度分类:5~100米的为浅孔钻机;100~800米的为中深孔钻机;800米以上的为深孔钻机。回转式立轴结构,立轴是中空的,钻杆装在其中,并为上、下卡盘卡住。立轴旋转时即带动钻杆旋转。卡盘卡和卸钻杆一般是靠油压操纵来带动立轴上下运动,并实现加压给进,这种钻机也称油压给进钻机。除油压给进外,还有机动钢绳给进、螺旋差动给进和手轮给进等不同型式。

回转式转盘钻机:适用于勘探和开发石油、天然气的探井和生产井。钻井较深,故所需功率较大。

二、冲击回转钻机

在用硬质合金钻头钻进的同时,在钻头与钻杆间接装的水力或风力冲击器,对钻头施加冲击载荷,扩大硬质合金钻头的钻进范围,提高钻进速度。

钻探作业中所用的机械设备,除钻机外还包括井架(钻塔)、绞车、动力机(电动机、柴油机)和泥浆泵等设备,以及机械手和拧管机等附属设备。

矿山机械

直接用于矿物开采和富选等作业的机械,包括采矿机械和选矿机械。探矿机械的工作原理和结构与开采同类矿物所用的采矿机械大多相同或相似,广义说也是一种矿山机械。矿山作业中还应用大量的起重机、输送机、通风机和排水机械。

一、采矿机械

采矿机械是直接开采有用矿物和采准工作所用的机械设备,包括:开采金属矿石和非金属矿石的采掘机械;开采煤炭用的采煤机械;开采石油用的石油钻采机械。第一台风动圆片采煤机是由英国工程师沃克设计的,约于1868年制造成功。19世纪80年代,美国有数百口油井用蒸汽为动力的冲击钻钻凿成功,1907年,又用牙轮钻机钻凿油井和天然气井,并从1937年起,将它用于露天矿钻进。

二、采掘机械

用于井下和露天矿山开采的采掘机械有:钻炮孔用的钻孔机械;挖装矿岩用的挖掘机械和装卸机械;钻凿天井、竖井和平巷用的掘进机械。

三、钻孔机械

分为凿岩机和钻机两类,钻机又有露天钻机和井下钻机之分。

(1)凿岩机:用于在中硬以上的岩石中钻凿直径为20~100毫米、深度在20米以内的炮孔。按其动力不同可分为风动、内燃、液压和电力凿岩机,其中风动凿岩机应用最广。

(2)露天钻机:按破碎矿岩的工作机构不同,分为钢绳冲击钻机、潜孔钻机、牙轮钻机和旋转钻机。钢绳冲击钻机因效率低,已逐渐被其他钻机代替。潜孔钻机用钻杆带动风动冲击器和钻头一起旋转,利用风动冲击器的活塞冲击钻头破碎矿岩,通常用在中小型矿山中钻直径80~250毫米的炮孔。牙轮钻机用牙轮钻头的辗压作用来破碎矿岩,适于在硬矿岩上钻直径150~440毫米的孔,它具有效率高、劳动强度小的优点,在大中型露天金属矿中得到广泛应用。潜孔(或牙轮)钻机由冲击器(或钻头)、回转机构、提升机构、加压装置、行走机构、排渣系统、钻架和钻杆组成。旋转钻机只适于钻较软的矿岩和煤。

(3)井下钻机:钻凿孔径小于150毫米的井下炮孔时,除应用凿岩机外还可应用80~150毫米的小直径潜孔钻。在煤或较软矿岩中钻直径70毫米以下的炮孔时,一般用电力钻或风钻,由电动机(或气动马达)带动钻杆钻孔,钻出的岩(煤)屑经钻杆上的螺旋槽排出。

四、掘进机械

利用刀具的轴向压力和回转力对岩面的辗压作用,直接破碎矿岩的成巷或成井机械设备。所用刀具有盘形滚刀、楔齿滚刀、球齿滚刀和铣削刀具。按掘进巷道的不同,分为天井钻机、竖井钻机和平巷掘进机。①天井钻机:专门用于钻凿天井和溜井,一般不需进入天井操作,用牙轮钻头先钻导向孔,用盘形滚刀组成的扩孔器向上扩孔。天井孔径一般为500~2500毫米。②竖井钻机:专门用于一次钻凿成井,由钻具系统、回转装置、井架、钻具提升系统和泥浆循环系统组成。直径9米的竖井钻机为直径9米的竖井钻机,成井直径为7.5米。③平巷掘进机:它是将机械破岩与排渣等工序结合起来并连续进掘的综合机械化设备,主要用于煤巷、软矿中的工程隧道和中等硬度以上矿岩的中平巷掘进。

五、采煤机械

采煤作业已由20世纪50年代的半机械化发展到80年代的综合机械化。综合机械化采煤广泛应用浅截深式双(单)滚筒联合采煤机(或刨煤机)、可弯曲刮板输送机和液压自移支架等设备,使回采工作面的破碎落煤、装煤、运输、支护等环节实现全面的综合机械化。

双滚筒采煤机是落煤机械。电动机经截割部分减速机把动力传递给螺旋滚筒落煤,机器的移动靠电动机经牵引部分传动装置来实现。牵引方式基本上有两种,即锚链牵引和无锚链牵引。锚链牵引借助牵引部分的链轮与固定在运输机上的锚链啮合而实现。无锚链牵引则借助齿轮与固定在运输机上的齿条啮合实现,具有较好的防滑性能。由于采煤机具有两个可调高滚筒,可以适应顶底板煤层变化,一次可采全高。可弯曲刮板输送机不仅是回采工作面的运煤设备,也是采煤机的轨道,供采煤机在其上牵引运行,同时它还是液压支架自移时的支点。

液压自移支架在采煤时用支柱撑起顶梁,使支架架体撑紧顶板。在推移输送机时,则以支架架体为支点,推出推移千斤顶使输送机移动一定的距离,然后再将支柱收起缩回顶梁,使架体与顶板脱离。这时以输送机为支点缩回推移千斤顶,则架体被拉向输送机旁。然后再升起支柱,撑起顶梁支撑顶板,至此完成一个推移过程。

选矿机械

选矿是在所采集的矿物原料中,根据各种矿物物理性质、物理化学性质和化学性质的差异选出有用矿物的过程。实施这种过程的称为选矿机械。选矿机械按选矿流程分为破碎、粉磨、筛分、分选(选别)和脱水机械。

一、破碎、粉磨、筛分、分级机械

破碎机械常用的有颚式破碎机、旋回破碎机、圆锥破碎机、辊式破碎机和反击式破碎机等。粉磨机械中使用最广的是筒式磨机,包括棒磨机、球磨机、砾磨机和自磨机等。筛分机械中常用的有惯性振动筛和共振筛。水力分级机和机械分级机是湿式分级作业中广泛使用的分级机械。

二、分选(选别)机械

按作用原理分为重力选矿机械、磁选机、浮选机和特殊选矿机械。分选机械中出现最早的是重力选矿机械,最初的活塞式跳汰机于1830~1840年在德国出现,用于金属矿分选。第一台磁选机(带式弱磁选机)于1888年问世。浮选机出现较晚,第一台浮选机(机械搅拌式的)出现于1910年。

三、重力选矿机械

利用矿粒与矸石的密度和粒度的差异,在运动介质(空气、水、悬浮液或重液)中进行分选的设备,包括跳汰机、重介质选矿机和离心选矿机。①跳汰机:借助隔膜、活塞或压缩空气使水箱中的水形成水流,使置于筛网上的矿粒在脉动水流作用下按密度、粒度分层。密度大的矿粒穿过筛网上的床石层聚集在水箱底部成为精矿,由排矿口排出。筛网上的中尾矿由筛上排矿装置排出。用于分选金属矿的主要有梯形跳汰机、双室可动锥底跳汰机和复振式跳汰机;用于选煤的有侧鼓式跳汰机和筛下空气室跳汰机。②重介质选矿机:用悬浮液或重液作为重介质,使矿粒与矸石分离。主要有重介质振动溜槽、重介质旋液器、斜轮重介质选煤机和立轮重介质选煤机。斜轮重介质选煤机是主要选煤设备之一,由分选槽、排放重产物的提升轮、排煤轮、传动装置等部件组成。在上升和水平二股悬浮液流作用下,煤与矸石在分选槽内分离,煤由排煤轮排出,密度较悬浮液大的矸石由提升轮提升并排出。③离心选矿机:用于回收微细矿泥中的金属矿粒,主要由主机与控制机构两部分组成。在主机锥形转鼓高速旋转所产生的离心力场中,重矿粒沉积到转鼓壁上成为精矿,轻矿粒附在精矿表面,受到流膜(矿浆流)作用,排出转鼓,成为尾矿。它适用于从微细矿泥(74~10微米)中分选出有用矿物,在钨、锡等选矿厂得到广泛使用。

四、磁选机

利用各种矿物的磁性差异,借助磁力和机械力对矿物的作用进行分选。磁选机由磁力系统、分选装置、给矿和排矿装置组成。磁选机种类很多,有永磁筒式磁选机、电磁平环强磁选机和高梯度强磁选机等。

五、浮选机

利用矿粒表面物理化学性质的差异对细粒矿物进行分选。矿粒浮选机附有浮选药剂,靠压缩空气或机械搅拌使不易被水润湿的矿粒附着在气泡上(正浮选法),升至液面,通过排矿装置作为精矿排出,易被水润湿的矿粒留在槽体中作为中尾矿排出。为机械搅拌式浮选机,其类型有平叶轮式和棒叶轮式两种。矿用浮选柱和煤用喷射旋流式浮选机则属于无搅拌式浮选机。

六、特殊选矿机械

特殊选矿机械的类型很多,有利用矿粒通过电场时作用在其上的电性(导电性、介电常数)差异进行分选的电选机;利用矿粒光学特性(颜色、反射率、透射率)和放射性差异对矿粒进行分选的光电拣选机、X光拣选机和放射性拣选机等。这些机械广泛应用于石棉、金刚石和铀等矿物的分选。

七、脱水机械

湿式选矿所得的精矿需要经过脱水机械处理,以使固、液体分离。脱水机械可分为浓缩机、过滤机、离心脱水机和干燥机。①浓缩机:主要由浓缩池和机械刮泥板组成。矿浆在浓缩池中沉淀,经刮泥板刮集到池中心的排矿口排出。②过滤机:主要有真空过滤机和压滤机两种,其中筒式和盘式真空过滤机是选矿厂使用的主要过滤设备。压滤机具有过滤强度高和固、液体分离率高等优点。③离心脱水机:分为过滤离心机和沉降离心机,用于选煤脱水。④干燥机:靠蒸发脱水,其结构有筒式和管式两类。设备简单,但运转费用高,使用场合不多。

冶金机械

在冶金工业的冶炼、铸锭、轧制、搬运和包装过程中使用的各种机械和设备,又称冶金设备。冶金过程工艺复杂,相应的冶金机械的特点是结构庞大、能耗大、生产连续化、设备成套性强。冶金机械大多在高温、多尘、重载和有腐蚀的条件下持续工作,须满足高效、可靠、安全、耐用和节能等要求。冶金机械总的发展趋势是大型化、连续化、高速化和自动化;同时也需要一些小型的高效精密机械和设备。

冶金机械按用途可分为生产钢铁、钢材的黑色金属冶金机械和生产非铁金属的有色金属冶金机械;按功能又可分为辅助设备、冶炼机械和加工机械。

(1)辅助设备:有耐火材料机械、炼焦机械、起重运输机械、烧结设备、热处理设备和各种加热炉等。

(2)冶炼机械:冶炼机械按工艺不同可分为火法冶金机械和湿法冶金机械。冶炼有色金属可根据矿石和能源供应等条件的不同,分别采用火法冶金机械或湿法冶金机械。

(3)加工机械:主要有轧延机械、挤压机械、拉拔机械和拉丝制绳机械。其中挤压机械又属于锻压机械。

在冶金工业中专用性较强的是冶炼机械和轧延机械。在这些成套设备中,主机的型式、基本参数和尺寸,标志着冶金工厂的产品特征和生产方式。至于通用性较强的起重运输机械、加热炉和湿法冶金所用的化工机械等,除须适应冶金工业高温、重载和特殊的工作环境外,其他的功能和结构与同类型的设备相似。

塑料机械

用于塑料加工和成形的机械。塑料机械包括混炼机械和成型机械两大类。配合塑料加工的通常还有热合、热焊和喷涂等设备。

塑料机械最初是仿效木材、陶瓷、橡胶和金属压铸等加工机械的原理发展的。塑料机械与橡胶机械虽有某些类似,但塑料加工温度高、硬度大、制品精度要求高,故塑料机械的选材、设计和制造都与橡胶机械有所不同。开炼机和压延机是最早出现的塑料机械。到19世纪70年代,就有人运用柱塞式注射机和挤出机进行塑料成形加工。塑料机械的高速发展始于20世纪30年代。1935年,法国人特罗斯特制造的单螺杆电加热塑料挤出机,已具有现代挤出机的雏型。1948年开始在注射机上使用螺杆塑化装置,齐格勒于1956年发明往复螺杆式注射机,使注射机结构基本定型。到20世纪70年代,塑料机械广泛采用电气和液压技术,并开始向大型、高速、精密、特殊用途、连续化和自动化,以及小型和超小型的方向发展。中国的塑料机械制造始于1958年。到20世纪60年代末,生产的塑料机械品种已比较齐全,开炼机、密炼机、挤出机、注射机和压延机都已系列化。已能生产螺杆直径为250毫米的挤出机、注射量为32000厘米3的注射机和直径为700×1800毫米的四辊压延机。

动力机械

将自然界中的能量转换为机械能而作功的机械装置。

早在公元1世纪,亚历山大的希罗已论述了用水力、风力和热空气推动的机械。后来人们开始在生活和生产活动中运用利用风能和水能的风帆、风车、水车、水磨等。18世纪末蒸汽机问世,进一步开拓了化学能的利用,大大地提高了劳动生产率,导致了工业革命。19世纪末,内燃机的发明和应用为汽车、机车、船舶提供了动力,并导致飞机的发明,使人类交通运输业的面貌发生了巨大的变革,更促进了机械制造业的巨大发展。19世纪末至20世纪初,随着汽轮机、燃气轮机、喷气式发动机、火箭发动机的发明,交通工具的速度大大提高,人们的交往更加方便,人类活动的领域更加开阔,航天事业得以开拓,从而进一步带动和促进了其他科学和工业部门的发展。

动力机械深刻地影响着人类生产力的发展,但是,动力机械的噪声、特别是热力发动机的排放物又给人类造成了日益严重的公害。

动力机械按其将自然界中不同能量转变为机械能的方式可以分为风力机械、水力机械和热力发动机3大类。

第一,风力机械。有风帆、风车(风力机)、风磨等。20世纪出现直接应用风力的发电装置,但受到自然风区分布的限制。一般认为风速应大于4米/秒才有利用价值。据估计,地球上蕴有风能约达10吉瓦,已经利用的不及百分之一,故风能大有开发的前景。

第二,水力机械。有水车、水磨、水轮机等。20世纪以来,利用水轮机发电的水电站日益增多,因为水电站具有运行费用低、无污染、取用不竭等优点。但是兴建水库、水坝,初始投资较大、建设时间较长,而且对生态平衡、地质力态平衡也有影响。中国水能蕴藏量约为680兆瓦,居世界之首,很有开发和利用的余地。

第三,热力发动机。热力发动机包括蒸汽机、汽轮机、内燃机(汽油机、柴油机、煤气机等)、热气机、燃气轮机、喷气式发动机等。在工业、农业、交通、采矿、兵工等部门,内燃机的应用最为广泛。船舶、机车、汽车、拖拉机、物料搬运机械、土方机械、坦克、排灌机械、摩托车、电影放映机、航空模型、小型发电装置无不以内燃机为动力。

(1)汽油机:以汽油为燃料,采用电点火,转速一般在3000~6000转/分,甚至高达每分万转。功率由几百瓦至几百千瓦。在农林方面广泛用作采茶机、割草机、机锄、喷药机、割灌机、机锯等的动力;在交通方面用作摩托车、汽车、小艇的动力。此外,用于通信和电影放映机的小型发电机组,采矿用凿岩机、建筑用打夯机等,无不以小型汽油机作动力。早期的飞机曾以大型汽油机为动力,后已基本上为涡轮机,特别是喷气式发动机所取代。汽油机的排放物对人类环境的污染毒害十分严重。

(2)柴油机:以柴油为燃料,利用压缩热自燃,转速一般在百余转至五六千转每分,功率由几千瓦至数万千瓦。广泛用作汽车、拖拉机、坦克、船舶、军舰、机车、发电机组、物料搬运机械、土方机械等的动力。20世纪60年代以来,由于世界性的石油危机,以及柴油机具有较高的热效率,柴油机的应用范围也日益扩大。一些过去采用汽油机的领域,如小轿车、轻型卡车等采用柴油机作动力的日渐增多。

(3)煤气机:以煤气、天然气和其他可燃气体为燃料,有采用电点火的,也有采用喷入少量柴油压燃引火的。由于气体燃料来源的限制,加上煤气机本身体积大、携带困难等原因,它的应用远不及汽油机、柴油机广泛。煤气机大多应用于固定式动力装置,但也有将气体燃料装囊,或液化装瓶以用于运输车辆的,但因使用不便,未能推广。

(4)蒸汽机:把蒸汽中的热能转化为机械能的热力装置。由于效率过低,除在少数国家仍用于机车外,已基本被淘汰。

(5)汽轮机:广泛用于大型发电机组和大型船舶的动力装置。

(6)热气机:或称斯特林发动机。以空气、氢和氦等作为工质、按回热闭式热力循环进行周期性的压缩和膨胀而作功的热力发动机。热气机是外燃机,可以采用多种燃料,同时还具有噪声低、振动小和排污较少等优点。主要缺点是散热器大、密封困难和成本较高。仍处于研制阶段,尚未推广应用。

(7)燃气轮机:以燃料燃烧产生的燃气直接推动涡轮作功的装置。转速可高达数万转每分,效率也较高。燃气轮机分为开式循环和闭式循环两种,多用作发电机组、船舶、机车和飞机的动力。

(8)喷气式发动机:利用燃料燃烧气体排出过程中所产生的反作用力作功的热力发动机,主要用于航空和航天方面。喷气式发动机可以分为两大类,即空气喷气式发动机和火箭喷气式发动机。从外界吸入空气作为工质、以空气中所含的氧作为氧化剂的喷气式发动机称为空气喷气式发动机。它又可分为无压气机空气喷气式发动机和有压气机空气喷气式发动机两种。现代航空上采用最广的燃气轮喷气式发动机就属于后一种。燃料和氧化剂都由发动机或飞行器本身随带的喷气式发动机称为火箭喷气式发动机,或简称火箭发动机。按其所用燃料分固体燃料火箭发动机和液体燃料火箭发动机两种,它们主要用作兵器和航天飞机的动力。

一、内燃机

燃料在机器内部燃烧,使放出的热能直接转换为动力的热力发动机,是一种动力机械。广义上的内燃机不仅包括往复活塞式内燃机、旋转活塞式发动机和自由活塞式发动机,也包括旋转叶轮式的燃气轮机、喷气式发动机等,但通常所说的内燃机是指活塞式内燃机。活塞式内燃机以往复活塞式最为普遍。活塞式内燃机将燃料和空气混合,在其气缸内燃烧,释放出的热能使气缸内产生高温高压的燃气。燃气膨胀推动活塞作功,再通过曲柄连杆机构或其他机构将机械功输出,驱动从动机械工作。活塞式内燃机自19世纪60年代问世以来,经过不断改进和发展,已是比较完善的机械。它热效率高、功率和转速范围宽、配套方便、机动性好,所以获得了广泛的应用。全世界各种类型的汽车均以内燃机为动力。海上商船、内河船舶和常规舰艇,以及某些小型飞机都由内燃机来推进。内燃机车约占各类机车的2/3。拖拉机、农业机械、工程机械、小型移动电站和战车等也都是用内燃机作为动力。世界上内燃机的保有量在动力机械中居首位,它在人类活动中占有非常重要的地位。

活塞式内燃机起源于用火药爆炸获取动力,但因火药燃烧难以控制而未获成功。1794年,英国人斯特里特提出从燃料的燃烧中获取动力,并且第一次提出了燃料与空气混合的概念。1833年,英国人赖特提出了直接利用燃烧压力推动活塞作功的设计。

1.煤气机问世

人们提出过各种各样的内燃机方案,但在19世纪中叶以前均未付诸实用。直到1860年,法国勒努瓦模仿蒸汽机的结构设计制造出第一台实用的煤气机。这是一种无压缩、电点火、使用照明煤气的内燃机。勒努瓦首先在内燃机中采用了弹力活塞环。这台煤气机的热效率为4%左右。英国的巴尼特曾提倡将可燃混合气在点火之前进行压缩。随后又有人著文论述对可燃混合气进行压缩的重要作用,并且指出压缩可以大大提高勒努瓦内燃机的效率。1862年,法国科学家罗沙对内燃机热力过程进行理论分析之后,提出提高内燃机效率的要求,这就是最早的四冲程工作循环。1876年,德国发明家N.A.奥托运用罗沙的原理,创制成功第一台往复活塞式、单缸、卧式、3.2千瓦的四冲程内燃机,仍以煤气为燃料,采用火焰点火,转速为156.7转/分,运转平稳。在当时,无论是功率还是热效率,它都是最高的。压缩比最初为2.66,热效率达到14%。奥托内燃机获得推广,性能也在不断提高。1880年单机功率达到11~15千瓦,到1893年又提高到150千瓦。由于压缩比的提高,热效率也随之增高,1886年热效率为15.5%,1897年已高达20%~26%。1881年,英国工程师克拉克研制成功第一台二冲程的煤气机,并在巴黎博览会上展出。

2.汽油机诞生

随着石油的开发,比煤气易于运输携带的汽油和柴油引起了人们的注意。首先获得试用的是易于挥发的汽油。1883年,德国的戴姆勒创制成功第一台立式汽油机,它的特点是轻型和高速。当时其他内燃机的转速不超过200转/分,它却一跃而达到800转/分。轻型和高速特别适应交通动输机械的要求,1885~1886年汽油机作为汽车动力运行成功,大大推动了汽车的发展;同时,汽车的发展又促进了汽油机的改进和提高。不久汽油机又用作小船的动力。

3.柴油机的发明

1892年,德国工程师狄塞尔受面粉厂粉尘爆炸的启发,设想将吸入气缸的空气高度压缩,使其温度超过燃料的自燃温度,再用高压空气将燃料吹入气缸,使之着火燃烧。他首创的压缩点火式内燃机(柴油机)于1897年研制成功,为内燃机的发展开拓了新途径。狄塞尔开始力图使内燃机实现卡诺循环,以求获得最高的热效率,但实际上做到的是近似的等压燃烧。其热效率达26%。压缩点火式内燃机的问世,引起了世界机械业的极大兴趣。压缩点火式内燃机也以发明者而命名为狄塞尔引擎。这种内燃机以后大多用柴油为燃料,故又称为柴油机。1898年,柴油机首先用于固定式发电机组,1903年用作商船动力,1904年装于舰艇,1913年第一台以柴油机为动力的内燃机车制成,1920年左右始用于汽车和农业机械。

二、燃气轮机

以连续流动的气体为工质带动叶轮高速旋转,将燃料的能量转变为有用功的内燃式动力机械,是一种旋转叶轮式热力发动机。

中国在南宋高宗年间(1131~1162年)已有走马灯的记载,它是涡轮机(透平)的雏形。15世纪末,意大利人列奥纳多·达芬奇设计出烟气转动装置,其原理与走马灯相同。至17世纪中叶,透平原理在欧洲得到了较多应用。

1791年,英国人巴伯首次描述了燃气轮机的工作过程。1872年,德国人施托尔策设计了一台燃气轮机,并于1900~1904年进行了试验,但因始终未能脱开起动机独立运行而失败。1905年,法国人勒梅尔和阿芒戈制成第一台能输出功的燃气轮机,但效率太低,仅3%~4%,因而未获得实用。

1920年,德国人霍尔茨瓦特制成第一台实用的燃气轮机,其效率为13%、功率为370千瓦,按等容加热循环工作,但因等容加热循环以断续爆燃的方式加热,存在许多重大缺点而被人们放弃。

随着空气动力学的发展,人们掌握了压气机叶片中气体扩压流动的特点,解决了设计高效率轴流式压气机的问题,因而在20世纪30年代中期出现了效率达85%的轴流式压气机。与此同时,透平效率也有了提高。在高温材料方面,出现了能承受600℃以上高温的铬镍合金钢等耐热钢,因而能采用较高的燃气初温。等压加热循环的燃气轮机终于得到成功的应用。

1939年,在瑞士制成了4兆瓦发电用燃气轮机,效率达18%。同年,在德国制造的喷气式飞机试飞成功,它是以推力为4900牛的He-S3B涡轮喷气发动机(一种航空发动机)作动力的。从此,燃气轮机进入了实用阶段,并开始迅速发展。

随着高温材料的不断进展,以及透平采用冷却叶片并不断提高冷却效果,燃气初温逐步提高,使燃气轮机效率不断提高。单机功率也不断增大,在20世纪70年代中期出现了数种100兆瓦级的燃气轮机,最高能达到130兆瓦。

与此同时,燃气轮机的应用领域不断扩大。1941年,瑞士制造的第一辆燃气轮机机车(1.64兆瓦)通过了交货试验。1947年,英国制造的第一艘装备燃气轮机的舰艇下水,它以1.86兆瓦的燃气轮机作加力动力。1950年,英国制成第一辆燃气轮机汽车(75千瓦)。此后,燃气轮机在更多的部门中获得应用。

在燃气轮机获得广泛应用的同时,还出现了燃气轮机与其他热机相结合的复合装置。最早出现的是与活塞式内燃机相结合的装置。20世纪50~60年代出现以自由活塞发气机与燃气轮机组成的自由活塞-燃气轮机装置,但由于笨重和系统较复杂,到20世纪70年代就停止了生产。此外,还发展了柴油机-燃气轮机复合装置。燃气-蒸汽联合循环装置能有效地利用燃气轮机高温排气的热量,提高热能的利用率,至20世纪70年代末,这类装置的效率最高的已达46%。另有一类利用燃气轮机排气热量供热(或蒸汽)的全能量系统,可有效地节约能源,已用于多种工业生产中。

利用工厂生产过程中排放的压力气体在透平中膨胀作功,以带动生产过程所需的压气机供气的装置,称为能量回收装置,这种装置与废气涡轮增压器类似。1936年,瑞士制成第一台能量回收装置,用于催化裂化炼油厂中。

三、蒸汽机

将蒸汽的能量转换为机械功的往复式动力机械。蒸汽机的出现曾引起了18世纪的工业革命。直到20世纪初,它仍然是世界上最重要的原动机,后来才逐渐让位于内燃机和汽轮机等。

16世纪末到17世纪后期,英国的采矿业,特别是煤矿,已发展到相当的规模,单靠人力、畜力已难以满足排除矿井地下水的要求,而现场又有丰富而廉价的煤作为燃料。现实的需要促使许多人,如英国的帕潘、萨弗里、纽科门等致力于“以火力提水”的探索和试验。萨弗里制成的世界上第一台实用的蒸汽提水机,在1698年取得标名为“矿工之友”的英国专利。他将一个蛋形容器先充满蒸汽,然后关闭进汽阀,在容器外喷淋冷水使容器内蒸汽冷凝而形成真空。打开进水阀,矿井底的水受大气压力作用经进水管吸入容器中;关闭进水阀,重开进汽阀,靠蒸汽压力将容器中的水经排水阀压出。待容器中的水被排空而充满蒸汽时,关闭进汽阀和排水阀,重新喷水使蒸汽冷凝。如此反复循环,用两个蛋形容器交替工作,可连续排水。

萨弗里的提水机依靠真空的吸力汲水,汲水深度不能超过6米。为了从几十米深的矿井汲水,须将提水机装在矿井深处,用较高的蒸汽压力才能将水压到地面上,这在当时无疑是困难而又危险的。纽科门及其助手卡利在1705年发明了大气式蒸汽机,用以驱动独立的提水泵,被称为纽科门大气式蒸汽机。扇形平衡杠杆左侧的配重将活塞提起,同时蒸汽进入活塞下部的汽缸中。当活塞上升到汽缸顶部时,关闭进汽阀,向汽缸中喷入冷水使蒸汽冷凝,形成真空,活塞上面的大气压力将活塞下压,提起杠杆左侧的提水泵拉杆,使装在矿井深处的提水泵将水汲出。因汽缸直径大于提水泵的缸径,虽然汽缸活塞上的压力只等于大气压,也可以汲出数十米深处的水。这种蒸汽机先在英国,后来在欧洲大陆得到迅速推广。它的改型产品直到19世纪初还在制造。纽科门大气式蒸汽机的热效率很低,这主要是由于蒸汽进入汽缸时,在刚被水冷却过的汽缸壁上冷凝而损失掉大量热量,只在煤价低廉的产煤区才得到推广。1764年,英国的仪器修理工瓦特为格拉斯哥大学修理纽科门蒸汽机模型时注意到这一缺点,于1765年发明了设有与汽缸壁分开的凝汽器的蒸汽机,并于1769年取得了英国的专利。初期的瓦特蒸汽机仍用平衡杠杆和拉杆机构来驱动提水泵。活塞由杠杆另一端的配重拉升到顶部后,平衡阀关闭而进汽阀打开,将蒸汽引入汽缸上端,同时排汽阀开启使活塞下汽缸部分和凝汽器接通而形成真空,活塞受压下降,从而拉起提水泵的拉杆。活塞被压到下端后关闭进汽阀和排汽阀,同时打开平衡阀连通汽缸的上下端,配重遂再次拉起活塞,如此循环作功提水。为了从凝汽器中抽除凝结水和空气,瓦特装设了抽气泵。他还在汽缸外壁加装夹层,用蒸汽加热汽缸壁,以减少冷凝损失。

1782年前后,瓦特将机器进一步改进,完成了两项重要发明:①在活寒工作行程的中途关闭进汽阀,使蒸汽膨胀作功以提高热效率;②使蒸汽在活塞两面都作功(双作用式)以提高输出功率。这时的活塞既要向下拉动杠杆又要向上推动杠杆,扇形平衡杠杆和拉链已不再适用,瓦特便发明了平行四边形机构。早在1770年左右,瓦特就开始研究如何利用蒸汽驱动旋转机械。为了避开别人已取得的将曲柄滑块机构应用到蒸汽机上的专利,瓦特于1781年发明了行星齿轮机构,使活塞的往复运动转换为主轴的旋转运动。汽缸内活塞的往复运动通过平行四边形机构传到杠杆,由杠杆带动连杆再通过齿轮传到主轴。

瓦特还于18世纪末将曲柄连杆机构用在蒸汽机上。瓦特的创造性工作使蒸汽机迅速地发展,他使原来只能提水的机械,成为可以普遍应用的蒸汽机,并使蒸汽机的热效率成倍提高,煤耗大大下降。因此瓦特当是蒸汽机最主要的发明人。

自18世纪晚期起,蒸汽机不仅在采矿业中得到广泛应用,在冶炼、纺织、机器制造等行业中都获得迅速推广。它使英国的纺织品产量在20多年内(从1766年到1789年)增长了5倍,为市场提供了大量消费商品,加速了资金的积累,并对运输业提出了迫切要求。在船舶上采用蒸汽机作为推进动力的实验始于1776年,经过不断改进,至1807年,美国的富尔顿制成了第一艘实用的明轮推进的蒸汽机船“克莱蒙脱”号。此后,蒸汽机在船舶上作为推进动力历百余年之久。1801年,英国的特里维西克提出了可移动的蒸汽机的概念。1803年,这种利用轨道的可移动的蒸汽机首先在煤矿区出现,这就是机车的雏型。英国的斯蒂芬森将机车不断改进,于1829年创造了“火箭”号蒸汽机车,该机车拖带一节载有30位乘客的车厢,时速达46千米/时,引起了各国的重视,开创了铁路时代。19世纪末,随着电力应用的兴起,蒸汽机曾一度作为电站中的主要动力机械。1900年,美国纽约曾有单机功率达5兆瓦的蒸汽机电站。

蒸汽机的发展在20世纪初达到了顶峰。它具有恒扭矩、可变速、可逆转、运行可靠、制造和维修方便等优点,因此曾被广泛用于电站、工厂、机车和船舶等各个领域中,特别在军舰上成了当时惟一的原动机。

蒸汽机的出现和改进促进了社会经济的发展,但同时经济的发展反过来又向蒸汽机提出了更高的要求,如要求蒸汽机功率大、效率高、重量轻、尺寸小等。尽管人们对蒸汽机作过许多改进,不断扩大它的使用范围和改善它的性能,但是随着汽轮机和内燃机的发展,蒸汽机因存在不可克服的弱点而逐渐衰落。蒸汽机的弱点是:离不开锅炉,整个装置既笨重又庞大;新蒸汽的压力和温度不能过高,排气压力不能过低,热效率难以提高;它是一种往复式机器,惯性力限制了转速的提高;工作过程是不连续的,蒸汽的流量受到限制,也就限制了功率的提高。

因此,抛弃了笨重锅炉的内燃机,最终以其重量轻、体积小、热效率高和操作灵活等优点,在船舶和机车上逐渐取代了蒸汽机。汽轮机则以其热效率高、单机功率大、转速高、单位功率重量轻和运行平稳等优点,将蒸汽机排挤出了电站。接着电动机又以其使用方便代替了蒸汽机在工业设备中的应用。然而小功率蒸汽机热效率比汽轮机高,所以在产煤区或只有劣质燃料的地区或某些特殊场合,蒸汽机仍有发挥作用的余地。

蒸汽机有很大的历史作用,它曾推动了机械工业甚至社会的发展。随着它的发展而建立的热力学和机构学为汽轮机和内燃机的发展奠定了基础。汽轮机继承了蒸汽机以蒸汽为工质的特点和采用凝汽器以降低排汽压力的优点,摒弃了往复运动和间断进汽的缺点。内燃机继承了蒸汽机的基本结构和传动形式,采用了将燃油直接输入汽缸内燃烧的方式,形成了热效率高得多的热力循环。同时,蒸汽机所采用的汽缸、活塞、飞轮、飞锤调速器,阀门和密封件等,均是构成多种现代机械的基本元件。

四、风力机

将风能转换为机械功的动力机械,又称风车。广义地说,它是一种以太阳为热源,以大气为工作介质的热能利用发动机。许多世纪以来,它同水力机械一样,作为动力源替代人力、畜力,对生产力的发展发挥过重要作用。近代机电动力的广泛应用以及20世纪50年代中东油田的发现,使风力机的发展缓慢下来。20世纪70年代初期,由于“石油危机”,出现了能源紧张的问题,人们认识到常规矿物能源供应的不稳定性和有限性,于是寻求清洁的可再生能源遂成为现代世界的一个重要课题。风能作为可再生的、无污染的自然能源又重新引起了人们重视。

风车最早出现在波斯,起初是立轴翼板式风车,后又发明了水平轴风车。风车传入欧洲后,15世纪在欧洲已得到广泛应用。荷兰、比利时等国为排水建造了功率达66千瓦以上的风车。18世纪末期以来,随着工业技术的发展,风车的结构和性能都有了很大提高,已能采用手控和机械式自控机构改变叶片桨距来调节风轮转速。风力机用于发电的设想始于1890年丹麦的一项风力发电计划。到1918年,丹麦已拥有风力发电机120台,额定功率为5~25千瓦不等。第一次世界大战后,制造飞机螺旋桨的先进技术和近代气体动力学理论为风轮叶片的设计创造了条件,于是出现了现代高速风力机。1931年,前苏联采用螺旋桨式叶片建造了一台大型风力发电机,风速为13.5米/秒时,输出功率达100千瓦,风能利用系数提高到0.32。在第二次世界大战前后,由于能源需求量大,欧洲一些国家和美国相继建造了一批大型风力发电机。1941年,美国建造了一台双叶片、风轮直径达53.3米的风力发电机,当风速为13.4米/秒时输出功率达1250千瓦。英国在20世纪50年代建造了三台功率为100千瓦的风力发电机。其中一台结构颇为独特,它由一个26米高的空心塔和一个直径24.4米的翼尖开孔的风轮组成。风轮转动时造成的压力差迫使空气从塔底部的通气孔进入塔内,穿过塔中的空气涡轮再从翼尖通气孔溢出。法国在20世纪50年代末到60年代中期相继建造了三台功率分别为1000千瓦和800千瓦的大型风力发电机。

新一代风力机的特点是:①增强抗风暴能力;②风轮叶片广泛采用轻质材料,如玻璃纤维复合材料等;③运用近代航空气体动力学成就使风能利用系数提高到0.45左右;④用微处理机控制,使风力机保持在最佳运行状态;⑤发展风力机阵列系统;⑥风轮结构形式多样化。法国人在20世纪20年代发明的垂直轴风轮在淹没了半个多世纪之后,已成为最有希望的风力机型之一。这种结构有φ型、Δ型、Y型和◇型等多种形式。它具有运转速度高、效率高和传动机构简单等优点,但需用辅助装置起动。人们还提出了许多新的设想,如旋涡集能式风力机,据估计,这种系统的单机功率将100~1000倍于常规风力机。

中国利用风车的历史至少不晚于13世纪中叶,曾建造了各种形式的简易风车碾米磨面、提水灌溉和制盐。直到20世纪50年代仍可见到“走马灯”式风车。中国已研制出30余种现代风力机,主要用作简易提水工具。20世纪60年代研制出功率3千瓦、叶轮直径6米的FWG-6型低速风力机。

五、水轮机

把水流的能量(动能、位能和压力能)转换为旋转机械能的动力机械。它属于流体机械中的透平机械。早在公元前100年前后,中国就出现了水轮机的雏形———水轮,用于提灌和驱动粮食加工器械。现代水轮机则大多数安装在水电站内,用来驱动发电机发电。它与发电机连接在一起,组成水轮发电机组。在水电站中,上游水库中的水经引水管引向水轮机,推动水轮机转轮旋转,带动发电机发电。作完功的水则通过尾水管道排向下游。

20世纪以来,水电机组一直向高参数、大容量方向发展。从20世纪60年代开始,前苏联和中国相继制成了225兆瓦的水轮发电机组,分别装于布拉茨克和刘家峡电站。接着,前苏联又制成了500兆瓦的混流式机组,装于布拉斯诺雅尔斯克电站。20世纪70年代,美国的大古力第三电站安装了700兆瓦的机组。20世纪80年代,又将有一批700兆瓦左右的混流式机组投入运行。

为了提高水电建设的经济效益,世界各国还在研制容量更大的机组。预计,1000兆瓦左右或更大的机组将会在不久出现。

随着电力系统中火电容量的增加和核电的发展,为解决合理调峰问题,世界各国除在主要水系大力开发或扩建大型电站外,正在积极兴建抽水蓄能电站,水泵水轮机因而得到迅速发展。

为了充分利用各种水力资源,潮汐、落差很低的平原河流甚至波浪等也引起普遍重视,从而使贯流式水轮机和其他小型机组迅速发展。

中国已经建成单机功率为12兆瓦以下的小型水电站8万余座,到1981年,总装机达7500兆瓦。另外,中国还生产了大量直接用来驱动各种机械的小型水轮机,如水轮泵等。

六、核动力装置

利用原子核反应堆内核燃料的裂变反应产生热能并转变为动力的装置。核动力装置包括核反应堆、产生动力的系统和设备(如核蒸汽供应系统和核电站汽轮机),以及为保证设备正常运行、人员健康和安全所需要的系统和设备。

自从1942年美国的费密等人建成第一座可控的链式核裂变反应堆以后,核能就逐步被用作动力。在20世纪50年代,出现了一批核动力装置,应用于核电站和核潜艇。到1983年底,世界上已建成核电站反应堆302座,总装机容量达19.9万兆瓦,其中最大的核电站反应堆容量达1200兆瓦。另外,还有数百艘核潜艇和水面船舰(包括航空母舰、巡洋舰、破冰船、运输船和商船等)也使用核动力装置。

核动力装置主要用于发电、舰艇和空间技术方面。

(1)发电:与火力发电相比,核电站基建投资较高,但燃料费用较低,发电成本也较低。到20世纪80年代,核电站技术已处于成熟阶段。在正式运行的核电站中,广泛采用的是热中子轻水堆(包括压水堆和沸水堆),其次是气冷堆和重水堆。这些核电站中都有核蒸汽供应系统和核电站汽轮机这两个重要组成部分。在上述堆型的核电站中,由于所提供的蒸汽常是饱和参数的,汽轮机一般都采用饱和蒸汽轮机。除沸水堆核电站外,其他堆型中核电站汽轮机的蒸汽均不直接与核反应堆接触,故汽轮机基本上无放射性污染。

(2)推进潜艇和水面舰船:在这类核动力装置中几乎都采用压水堆。核动力装置能以较少的燃料提供较大动力,故核潜艇的航速高、续航能力大。核潜艇的航行时间主要取决于工作人员的生理状态和给养保证。核反应不是化学燃料反应,不需要氧气,这对潜艇来说是个极可贵的优点。

(3)用于空间技术和其他方面:空间核动力装置一般包括热源和能量转换器两个部分,热源可以是核反应堆,但利用较多的是同位素电池。能量转换器使热能转化为电能。它可以是静态的(包括热电型和热离子型两种),也可以是动态的。静态能量转换器的功率较小,效率较低;动态能量转换器的功率较大,效率较高。这些装置也可用于海洋和陆地上的特殊场合,如极地气象站等。

七、离心分离机

利用离心力分离液体与固体颗粒或液体与液体的混合物中各组分的机械,又称离心机。它主要用于将悬浮液中的固体颗粒与液体分开(例如从糖蜜中分离出砂糖结晶),或将乳浊液中两种密度不同又互不相溶的液体分开(例如从牛奶中分离出奶油)。离心分离机也可排除成件湿固体中的液体,例如用洗衣机甩干湿衣服。特殊的超速管式分离机还可分离不同密度的气体混合物,例如浓缩分离气态六氟化铀。利用不同密度或粒度的固体颗粒在液体中沉降速度不同的特点,有的沉降离心机可对固体颗粒按密度或粒度进行分级。离心分离机大量应用于化工、石油、食品、制药、选矿、煤炭、水处理和船舶等部门。

中国古代,人们用绳索的一端系住陶罐,手握绳索的另一端,旋转甩动陶罐,产生离心力挤压出陶罐中浆果的汁液,这是离心分离原理的早期应用。工业离心机诞生于欧洲。19世纪中叶先后出现纺织品脱水用的三足式离心机和制糖厂分离结晶砂糖用的上悬式离心机。这些最早的离心机都是间歇操作和人工排渣的。由于卸渣机构的改进,20世纪30年代出现了连续操作的离心机,间歇操作离心机也因实现了自动控制而得到发展。1879年,瑞典的拉瓦尔发明第一台从牛奶中分离奶油的分离机,它的转鼓仅是一个空心的圆筒。后来转鼓内增加了轴向叠置的圆锥形碟片,使分离效果显著改善,并增大了处理能力,这一技术进展导致碟式分离机迅速发展。离心分离机的转速则逐渐由低速向高速发展,转鼓直径也逐渐增大,改善了分离效果,提高了处理能力。

八、过滤机

利用多孔性过滤介质截留液体与固体颗粒混合物中的固体颗粒而实现固-液分离的设备。过滤机广泛应用于化工、石油、制药、轻工、食品、选矿、煤炭和水处理等部门。

中国古代即已应用过滤技术于生产,公元前200年已有植物纤维制作的纸。公元105年蔡伦改进了造纸法。他在造纸过程中将植物纤维纸浆荡于致密的细竹帘上。水经竹帘缝隙滤过,一薄层湿纸浆留于竹帘面上,干后即成纸张。最早的过滤大多为重力过滤,后来采用加压过滤提高了过滤速度,进而又出现了真空过滤。20世纪初发明的转鼓真空过滤机实现了过滤操作的连续化。此后,各种类型的连续过滤机相继出现。间歇操作的过滤机(例如板框压滤机等)因能实现自动化操作而得到发展,过滤面积越来越大。为得到含湿量低的滤渣,机械压榨的过滤机得到了发展。

九、锅炉

利用燃料或其他能源的热能把水加热成为热水或蒸汽的机械设备。锅的原义是指在火上加热的盛水容器,炉是指燃烧燃料的场所,锅炉包括锅和炉两大部分。锅炉中产生的热水或蒸汽可直接为工业生产和人民生活提供所需要的热能,也可通过蒸汽动力装置转换为机械能,或再通过发电机将机械能转换为电能。提供热水的锅炉称为热水锅炉,主要用于生活,工业生产中也有少量应用。产生蒸汽的锅炉称为蒸汽锅炉,常简称为锅炉,多用于火电站、船舶、机车和工矿企业。

蒸汽锅炉有时又叫蒸汽发生器,是蒸汽动力装置的重要组成部分。电站锅炉、汽轮机和发电机是火力发电站的主机,因此电站锅炉是生产电能的重要设备。工业锅炉是在各种工业企业中提供生产和供暖所需的蒸汽的必不可少的设备。工业锅炉数量甚多,需要消耗大量燃料。利用生产过程中高温废气作为热源的余热锅炉对节能有重要作用。船用锅炉装在各种船舶上,所产生的蒸汽用于驱动蒸汽动力机械。机车锅炉作为蒸汽机车的主要设备尚有一定的应用。

锅炉承受高温高压,安全问题十分重要。即使是小型锅炉,一旦发生爆炸,后果也十分严重。因此,对锅炉的材料选用、设计计算、制造和检验等都制订有严格的法规。

锅炉的发展分锅和炉两个方面。

1.锅的发展

18世纪上半叶,英国煤矿使用的蒸汽机,包括瓦特的初期蒸汽机在内,所用的蒸汽压力等于大气压力。18世纪后半叶改用高于大气压力的蒸汽。19世纪,常用的蒸汽压力提高到0.8兆帕左右。与此相适应,最早的蒸汽锅炉是一个盛水的大直径圆筒形立式锅壳,后来改用卧式锅壳,在锅壳下方砖砌炉体中烧火。随着锅炉越做越大,为了增加受热面积,在锅壳中加装火筒,在火筒前端烧火,烟气从火筒后面出来,通过砖砌的烟道排向烟囱并对锅壳的外部加热,称为火筒锅炉。开始只装一只火筒,称为单火筒锅炉或康尼许锅炉;后来加到两个火筒,称为双火筒锅炉或兰开夏锅炉。1830年左右,在掌握了优质钢管的生产和胀管技术之后出现了火管锅炉。一些火管装在锅壳中,构成锅炉的主要受热面,火(烟气)在管内流过。在锅壳的存水线以下装上尽量多的火管,称为卧式外燃回火管锅炉。它的金属耗量较低,但需要很大的砌体。

19世纪中叶,出现了水管锅炉。锅炉受热面是锅壳外的水管,取代了锅壳本身和锅壳内的火筒、火管。锅炉的受热面积和蒸汽压力的增加不再受到锅壳直径的限制,有利于提高锅炉蒸发量和蒸汽压力。这种锅炉中的圆筒形锅壳遂改名为锅筒,或称为汽包。

20世纪初期,汽轮机开始发展,它要求配以容量和蒸汽参数较高的锅炉。直水管锅炉已不能满足要求。随着制造工艺和水处理技术的发展,出现了弯水管式锅炉。开始是采用多锅筒式。随着水冷壁、过热器和省煤器的应用和锅筒内部汽水分离元件的改进,锅筒数目逐渐减少,既节约了金属,又有利于提高锅炉的压力、温度、容量和效率。到20世纪30年代,已广泛应用2~4兆帕、385℃~400℃的具有水冷壁的弯水管式锅炉配6~12兆瓦的火电机组。第二次世界大战以后,锅炉工业发展很快。20世纪40年代开始采用10兆帕、510℃左右的配50兆瓦发电机组的锅炉;20世纪50年代开始采用14兆帕左右、540℃~570℃的配100~200兆瓦发电机组的锅炉;20世纪60年代开始采用配300~600兆瓦发电机组的亚临界压力(17~18.5兆帕)锅炉;20世纪70年代最大的自然循环锅炉单台容量已达850兆瓦。

以前的火筒锅炉、火管锅炉和水管锅炉都属于自然循环锅炉,水汽在上升、下降管路中因受热情况不同造成密度差而产生自然流动。在发展自然循环锅炉的同时,从20世纪30年代开始应用直流锅炉。20世纪40年代开始应用辅助循环锅炉。

辅助循环锅炉又称强制循环锅炉,它是在自然循环锅炉的基础上发展起来的。在下降管系统内加装循环泵,以加强蒸发受热面的水循环。直流锅炉中没有锅筒,给水由给水泵送入省煤器,经水冷壁和过热器等蒸发受热面变成过热蒸汽送往汽轮机,各部分流动阻力全由给水泵来克服。第二次世界大战以后,这两种型式的锅炉得到较快发展,因为当时发电机组要求高温高压和大容量。发展这两种锅炉的目的是:缩小或不用锅筒,可以采用小直径管子作受热面,可以比较自由地布置受热面。随着自动控制和水处理技术的进步,它们渐趋成熟。20世纪70年代最大的单台辅助循环锅炉是17兆帕压力配1000兆瓦发电机组。在超临界压力时,直流锅炉是惟一可以采用的一种锅炉,20世纪70年代最大的单台容量是27兆帕压力配1300兆瓦发电机组。后来又发展了由辅助循环锅炉和直流锅炉复合而成的复合循环锅炉。

2.炉的发展

在锅炉的发展过程中,燃料种类对炉膛和燃烧设备有很大的影响。因此,不但要求发展各种炉型来适应不同燃料的燃烧特点,而且还要提高燃烧效率以节约能源。此外,炉膛和燃烧设备的技术改进还要求尽量减少锅炉排烟中的污染物(硫氧化物和氮氧化物)。

早年的锅壳锅炉采用固定炉排,多燃用优质煤和木柴,加煤和除渣均用手工操作。直水管锅炉出现后开始采用机械化炉排,其中链条炉排得到了广泛的应用。炉排下送风从不分段的“统仓风”发展成分段送风。早期炉膛低矮,燃烧效率低。后来人们认识到炉膛容积和结构在燃烧中的作用,将炉膛造得较高,并采用二次风,从而提高了燃烧效率。链条炉排能适应大多数煤种,但不能烧强粘结烟煤。下饲炉排也出现得很早,只适宜于烧优质烟煤。20世纪40年代出现了抛煤机。抛煤机可以配在固定火床上,也可以配在链条炉排上而成为抛煤机链条炉排。发电机组功率超过6兆瓦时,以上这些层燃炉的炉排尺寸太大,结构复杂,不易布置,所以20世纪20年代开始使用室燃炉,室燃炉燃烧煤粉和油。煤由磨煤机磨成煤粉后用燃烧器喷入炉膛燃烧,发电机组的容量遂不再受燃烧设备的限制。自第二次世界大战初起,电站锅炉几乎全部采用室燃炉。

早年制造的煤粉炉采用了U形火焰。燃烧器喷出的煤粉气流在炉膛中先下降,再转弯上升。后来又出现了前墙布置的旋流式燃烧器,火焰在炉膛中形成L形火炬。随着锅炉容量增大,旋流式燃烧器的数目也开始增加,可以布置在两侧墙,也可以布置在前后墙。1930年左右出现了布置在炉膛四角且大多成切圆燃烧方式的直流燃烧器。20世纪60年代某些国家曾在多角形炉膛中应用直流燃烧器的切圆燃烧方式,用以燃烧褐煤。第二次世界大战后,石油价廉,许多国家广泛采用燃油锅炉。燃油锅炉的自动化程度容易提高。20世纪70年代石油提价后,许多国家又转向利用煤炭资源。这时电站锅炉的容量也越来越大,要求燃烧设备不仅能燃烧完全,着火稳定,运行可靠,低负荷性能好,还必须减少排烟中的污染物质。20世纪40~60年代,为了强化燃烧和减少飞灰,一度采用液态排渣煤粉炉和旋风炉,但由于采用这种燃烧方式生成的氮氧化物太多,从20世纪70年代起已较少采用。

在燃煤(特别是燃褐煤)的电站锅炉中采用分级燃烧或低温燃烧技术,即延迟煤粉与空气的混合或在空气中掺烟气以减慢燃烧,或把燃烧器分散开来抑制炉温,不但可抑制氮氧化物生成,还能减少结渣。沸腾燃烧方式属于一种低温燃烧,除可燃用灰分十分高的固体燃料外,还可在沸腾床中掺入石灰石用以脱硫。

十、泵

输送液体或使液体增压的机械。它将原动机的机械能或其他外部能量传送给液体使液体能量增加。泵主要用来输送液体包括水、油、酸碱液、乳化液、悬乳液和液态金属等,也可输送液体和气体混合物,含悬浮固体物的液体。有些泵可用作液压泵,主要作用是产生高压液体。

水的提升对于人类生活和生产都十分重要。古代就已有各种提水器具,例如,埃及的链泵(公元前17世纪),中国的桔槔(公元前17世纪)、辘轳(公元前11世纪)和水车(公元1世纪)。比较著名的还有公元前3世纪阿基米德发明的螺旋杆,可以平稳连续地将水提至几米高处,其原理仍为现代螺杆泵所利用。

公元前200年左右,古希腊工匠克特西比乌斯发明的灭火泵是一种最原始的活塞泵,已具备典型活塞泵的主要元件,但活塞泵只是在出现了蒸汽机之后才得到迅速发展。1840~1850年,美国沃辛顿发明泵缸和蒸汽缸对置的蒸汽直接作用的活塞泵,标志着现代活塞泵的形成。19世纪是活塞泵发展的高潮时期,当时已用于水压机等多种机械中。然而随着需水量的剧增,从20世纪20年代起,低速的、流量受到很大限制的活塞泵逐渐被高速的离心泵和回转泵所代替。但是在高压小流量领域,往复泵仍占有主要地位,尤其是隔膜泵、柱塞泵独具优点,应用日益增多。

回转泵的出现与工业上对液体输送的要求日益多样化有关。早在1588年就有了关于4叶片滑片泵的记载,以后陆续出现了其他各种回转泵,但直到19世纪回转泵仍存在泄漏大、磨损大和效率低等缺点。20世纪初,人们解决了转子润滑和密封等问题并采用高速电动机驱动,适合较高压力、中小流量和输送各种粘性液体的回转泵才得到迅速发展。回转泵的类型和适宜输送的液体种类之多为其他各类泵所不及。

利用离心力输水的想法最早出现在列奥纳多·达芬奇所作的草图中。1689年,法国物理学家帕潘发明了4叶片叶轮的蜗壳离心泵。但更接近于现代离心泵的则是1818年在美国出现的具有径向直叶片、半开式双吸叶轮和蜗壳的所谓马萨诸塞泵。1851~1875年,带有导叶的多级离心泵相继发明,使发展高扬程离心泵成为可能。尽管早在1754年,瑞士数学家欧拉提出了叶轮式水力机械的基本方程式,奠定了离心泵设计的理论基础,但直到19世纪末高速电动机的出现,使离心泵获得理想动力源之后,它的优越性才得以充分发挥。在英国的雷诺和德国的普夫莱德雷尔等许多学者的理论研究和实践的基础上,离心泵的效率大大提高,它的性能范围和使用领域也日益扩大,已成为现代应用最广、产量最大的泵。