新型无机材料
新型无机材料
材料与人类文明和技术进步密切相关,每一种新的材料的问世,都伴随着生产力的飞速前进。材料还是人类生产活动和生活必需的物质基础,随着科学技术的发展与进步,材料的种类也在发生着日新月异的变化,各种新型材料层出不穷,在高新技术领域中占有重要的地位。材料科学是研究材料的成分、结构、加工和材料性能及应用之间相互关系的科学。
一、耐磨耐高温材料
耐磨耐高温材料一般是指碳化硅、氮化硼以及第四、第五、第六副族元素和第八族元素与碳、氮、硼等形成的,具有硬度大、熔点高特点的化合物。
(一)碳化硅(SiC)
碳化硅属于原子晶体,其晶体结构和金刚石相似,它的熔点很高,在标准状况下为2827℃,硬度和金刚石相差无几,所以又被称为金刚砂。在工业中,将石英和过量焦炭的混合物在电炉中煅烧可制得碳化硅。
纯净的碳化硅是无色、耐热、稳定性好的高硬度化合物。工业上的碳化硅因含杂质而呈绿色或黑色。
工业上碳化硅常用作磨料和制造砂轮或磨石的摩擦表面。常用的碳化硅磨料有两种不同的晶体,一种是绿碳化硅,含SiC 97%以上,主要用于磨硬质含金工具。另一种是黑碳化硅,有金属光泽,含SiC 95%以上,强度比绿碳化硅大,但硬度较低,主要用于磨铸铁和非金属材料。
(二)氮化硼(BN)
将三氧化二硼(B2O3)与氯化铵(NH4Cl)共熔,或将单质硼在氨气(NH3)中燃烧均可制得氮化硼(BN),氮化硼是白色、难溶、耐高温的物质。通常制得的氮化硼是石墨型结构,俗称为白色石墨。另一种是金刚石型,和石墨转变为金刚石的原理类似,石墨型氮化硼在高温(1800℃)、高压(800Mpa)下可转变为金刚型氮化硼。这种氮化硼中B-N键长(156pm)与金刚石在C-C键长(154pm)相似,密度也和金刚石相近,它的硬度和金刚石不相上下,而耐热性比金刚石好,是新型耐高温的超硬材料,用于制作钻头、磨具和切割工具。
(三)硬质合金
第四副族、第五副族以及第六副族金属的碳化物、氮化物、硼化物等,由于硬度和熔点特别高,所以统称为硬质合金。下面以碳化物为主要对象来说明硬质含金的结构、特征和应用。
第四副族、第五副族以及第六副族金属与碳形成的金属型碳化物中,由于碳原子半径小,能填充于金属品格的空隙中并保留金属原有的晶格形式,形成间充固溶体。在适当条件下,这类固溶体还能继续溶解它的组成元素,直到达到饱和为止。因此,它们的组成可以在一定范围内变动(例如碳化钛的组成就在TiC0.5~TiC之间变动),化学式不符合化合价规则。当溶解的碳含量超过某个极限时(例如碳化钛中Ti∶C=1∶1),晶格形式将发生变化,使原金属晶格转变成另一种形式的金属晶格,这时的间充固溶体叫做间充化合物。
金属型碳化物,尤其是第四副族、第五副族以及第六副族金属碳化物的熔点都在3273K以上,其中碳化铪、碳化钽分别为4160K和4150K,是当前所知道的物质中熔点最高的。大多数碳化物的硬度很大,它们的显微硬度大于1800kg·mm2(显微硬度是硬度表示方法之一,多用于硬质合金和硬质化合物,显微硬度1800kg·mm2,相当于莫氏—金刚石—硬度9)。许多碳化物高温下不易分解,抗氧化能力比其组分金属强。碳化钛在所有碳化物中热稳定性最好,是一种非常重要的金属型碳化物。然而,在氧化气氛中,所有碳化物高温下都容易被氧化,可以说这是碳化物的一大弱点。
除碳原子外,氮原子、硼原子同样能进入金属晶格的空隙中,形成间充固溶体;它们与间充型碳化物的性质相似,具有能导电、导热、熔点高、硬度大等优点,但是脆性却非常的大。
(四)金属陶瓷
随着社会和尖端技术的不断发展和创新,在火箭、人造卫星及原子能的领域对耐高温材料提出了新的要求,希望这种材料既能在高温时有很高的硬度、强度,经得起激烈的机械震动和温度变化,又有耐氧化腐蚀、高绝缘等性能。无论高熔点金属或陶瓷都很难同时满足这些。金属具有良好的机械性能和韧性,但高温化学稳定性较差,易于氧化。陶瓷的特点是耐高温,化学稳定性好,但最大的缺点是脆性,抗机械冲击和热冲击能力低。金属陶瓷是由耐高温金属如Cr、Mo、W、Ti等和高温陶瓷如Al2O3、ZrO3、TiC等经过烧结而形成的一种新型高温材料,它兼有金属和陶瓷的优点,密度小、硬度大、耐磨、导热性好,不会由于骤冷骤热而脆裂。金属陶瓷是具有综合性能的新型高温材料,适用于高速切削刀具、冲压冷拉模具、加热元件、轴承、耐蚀制件、无线电技术、火箭技术、原子能工业等。
二、新型陶瓷材料
新型陶瓷材料与传统陶瓷相比,舍弃了岩石、矿物、粘土等天然材料而采用人工合成的高纯度无机化合物为原料,在严格控制的条件下经成型、烧结和其他处理而制成具有微细结晶组织的无机材料。它具有一系列优越的物理、化学和生物性能,其应用范围是传统陶瓷远远不能相比的,这类陶瓷又称为特种陶瓷或精细陶瓷。
新型陶瓷材料是否是氧化物分为两类:一类是纯氧化物陶瓷,如三氧化二铝(Al2O3)、二氧化锆(ZrO2)、氧化镁(MgO)、氧化钙(CaO)、氧化铍(BeO)、二氧化钍(ThO2)等;另一类是非氧化物系陶瓷,如碳化物、硼化物、氮化物和硅化物等。另外,按照其性能与特征又可分为高温陶瓷、超硬质陶瓷、半导体陶瓷、高韧陶瓷、电解质陶瓷、磁性陶瓷、导电性陶瓷等。随着成分、结构和工艺的不断改进,具有特殊功能的新型陶瓷不断涌现,按其应用不同又可将它们分为工程结构陶瓷和功能陶瓷两类。
在工程结构上使用的陶瓷称为工程陶瓷,也称高温结构陶瓷,它主要在高温下使用。这类陶瓷具有在高温下强度高、抗氧化、硬度大、耐磨损、耐腐蚀、耐烧蚀等优点,是空间技术、军事技术、原子能、业及化工设备等领域中的重要材料。工程陶瓷有许多种类,但目前世界上研究最多,认为最有发展前途的是氯化硅、碳化硅和增韧氧化物三类材料。
用精密陶瓷氮化硅来代替金属制造发动机的耐热部
件,可以大幅度提高工件温度,进而提高热效率,降低燃料消耗,节约能源,减少发动机的体积和重量,而且又代替了如镍、铬、钠等重要金属材料,所以,被人们认为是对发动机的一场革命。氮化硅可用多种方法制备,工业上普遍采用高纯硅与纯氮在1600K反应后获得:
另外的一种方法就是运用化学气相沉积法,使SiCl4和N2在H2气氛保护下反应,产物Si3N4聚集在石墨基体上,形成一层致密的Si3N4层。这种方法得到的氮化硅纯度较高,其反应如下:
另外,氯化硅、碳化硅等,还可用来制造发动机的叶片、轴承、切削刀具、火箭喷嘴、机械密封件、炉子管道等,具有非常广泛的用途。
功能陶瓷就是利用陶瓷对声、光、电、磁、热等物理性能所具有的特殊功能而制造的陶瓷材料,其种类繁多,用途各异。例如,根据陶瓷电学性质的差异可制成导电陶瓷、半导体陶瓷、介电陶瓷、绝缘陶瓷等电子材料,用于制作电容器、电阻器、电子工业中的高温高频器件,变压器等形形色色的电子零件。利用陶瓷的光学性能可制造固体激光材料、光导纤维、光储存材料及各种陶瓷传感器。此外,陶瓷还用作压电材料、磁性材料、基底材料等。综上所述,新型的陶瓷材料在性能方面具有极大的优越性,使其有非常广阔的发展空间。
三、磁性材料
早在很久以前,磁性的功能就被人类利用在指南针等物体上。磁性材料是生产实践中的重要的电子材料,最早主要用于采用金属及合金系统。随着生产的发展,在电力工业、电讯工程及高频无线电技术等方面,迫切要求提供一种具有很高电阻率的高效能磁性材料。在重新研究磁铁矿及其他具有磁性的氧化物的基础上,研制出了一种新型磁性材料——铁氧体。铁氧体属于氧化物系统的磁性材料,是以氧化铁和其他铁族元素或稀土元素氧化物为主要成分的复合氧化物,可用于制造能量转换、传输和信息存储的各种功能器件。
铁氧体磁性材料按照晶体结构可分为尖晶石型(MFe2 O4)、石榴石型(R3Fe5O12)、磁铅石型(MFe12O19)、钙钛矿型(MFeO3)。其中M指离子半径与Fe2+相近的二价金属离子,R为稀土元素。根据铁氧体的用途不同,又可分为软磁、硬磁、矩磁和压磁等几类。
软磁材料是指在较弱的磁场下容易磁化也容易退磁的一种铁氧体材料。在生产实践中具有实用价值的软磁铁氧体主要是锰锌铁氧体Mn-ZnFe2O4和镍锌铁氧体Ni-Zn-FeO4。软磁铁氧体的晶体结构一般都是立方晶系尖晶石型,这是目前各种铁氧体中用途较广、数量较大、品种较多、产值较高的一种材料,主要用作各种电感元件,如滤波器、变压器及天线的磁性元件和带录音、录像的磁头。
硬磁材料是指磁化后不易退磁,能保留磁性的一种铁氧体材料,又叫做永磁材料或恒磁材料。硬磁铁氧体的晶体结构大致是六角晶系磁铅石型,其典型代表是钡铁氧体BaFe12O19。这种材料性能较好,成本较低,不仅可用作电讯器件如录音器、电话机及各种仪表的磁铁,而已在医学、生物和印刷显示等方面也得到了应用。
磁性材料的旋磁性是指在两个互相垂直的直流磁场和电磁波磁场的作用下,电磁波在材料内部按一定方向的传播过程中,其偏振面会不断绕传播方向旋转的现象。旋磁现象实际应用在微波波段,因此,旋磁铁氧体材料也称为微波铁氧体。在日常生活中旋磁铁氧体材料有:镁锰铁氧体(Mg-MnFe3O4),镍钢铁氧体(Ni-CuFe2O4)及稀土石榴型铁氧体(3Me2O3·5Fe2O3,Me为三价稀土金属离子,如Y3+、Sm3+、Gd3+等),这种磁性材料主要用于雷达、通讯、导航、遥测、遥控等电子设备中。
重要的硬磁材料有锰锌铁氧体和温度特性稳定的Li-Ni-Zn铁氧体、Li-Mn-Zn铁氧体。硬磁材料具有辨别物理状态的特性,如电子计算机的“1”和“0”两种状态,各种开关和控制系统的“开”和“关”两种状态及逻辑系统的“是”和“否”两种状态等。几乎所有的电子计算机都使用硬磁铁氧体组成高速存储器。
四、超导材料
金属材料的电阻通常随着温度的升高而增加,随温度的降低而减小;当外界温度降低到一定数值的时候,某些金属及合金的电阻会完全消失,这种现象称为超导现象。具有超导性的物质称为超导体或超导材料。超导体电阻突然消失时的温度称为临界温度(Tc)。
1911年,荷兰物理学家Onnes成功地制取了液体氦,获得了4.2K的低温。与此同时发现水银的电阻在4.2K附近突然下降到零,这就是人类第一次发现的超导现象,由于超导现象有着非常重要的应用,所以科学家把目光投向了这里。
1986年4月瑞士科学家贝德诺兹等经过长期的研究发现由钡、镧、铜、氧组成的氧化物可能是高Tc的超导材料,并获得了Tc为30K的超导体,这是对超导材料的研究取得的第一次重大突破。在这之后,各国科学家对这一类材料进行了广泛研究。1987年2月美国科学家发现钡-钯-铜-氧材料的超导转变温度高达98K,从而突破了液氦温区而进入液氮温区。中国科学院物理所、化学所、北京大学等也都分别研制成功Tc为83.7K的超导线材和超导薄膜。日本研制成功钇—钡—铜—氧陶瓷高温超导材料,其成分为0.6Ba—0.4Y—11Cu—3O,在123K开始显示超导电性,在93K时出现零电阻。目前新的氧化物系列不断出现,如Bi-Sr—Ca-CuO,Tl-Ba-Ca-CuO等,它们的超导转变温度超过了120K。这些研究成果为超导材料早日付诸实用开辟了途径。
另外,人们还发现碳的第三种同素异形体——C60(俗称足球烯)与碱金属作用形成的AxC60(A代表钾、铷、铯等),都属于超导体,其超导转变温度列于表2-2。从表中可看到,大多数AxC60超导体的转变温度比金属合金超导体高。这使人们看到C60这类有机超导体的巨大潜力,同时因其加上性能优于金属氧化物(陶瓷)超导体,因此Ax C60类超导体将是很有发展前途的超导材料。
表2-2 AxC60的超导转变温度
超导材料的应用范围非常的广泛,例如,用超导材料制造的超导磁体,可产生很强的磁场,另外超导材料的体积小、重量轻、损耗电能小,比目前使用的常规电磁铁优异得多。应用超导材料还可以制造大功率超导发电机、磁流发电机、超导储能器、超导电缆等。超导技术最引人注目的应用是超导磁悬浮列车,其车速可高达500km/h。在海洋航行中利用超导电磁推进器,即不用电动机而实现高速、高效、无噪音航行。利用超导的完全抗磁性可制造超导无摩擦轴承。无论是在能源、电子、通讯、交通,还是国防军事技术、空间技术、受控热核反应以及医学等各个领域中,超导材料将进一步发挥其重要的作用。
五、光导纤维和激光材料
(一)光导纤维
光导纤维简称光纤,是近十年刚刚蓬勃发展起来的新型材料,是材料家族中的又一新秀。光纤的中心是用高折射率的超纯石英或特种光学玻璃拉制成的晶莹细丝,称纤维芯。纤维芯的外皮是一层低折射率的玻璃或塑料制成的纤维皮。光纤具有传导光波的能力。
光纤的纤维内芯是一种光密介质,外皮是一种光疏介质。当光线进入纤维芯,就只能在纤维芯内传播(全反射),经无数次全反射,呈锯齿形向前传播,最后到达纤维芯的另一端。这就是光纤传递信号的原理,图2-15所示:
图2-15 光纤传递信原理
目前应用较多的有高纯石英光纤、组分玻璃光纤和塑料光纤。石英光纤所需的主要原料是经过精制的石英(SiO2),它由SiCl4水解而得到:
工业上通常将天然石英砂在电炉中以碳还原得到粗硅或结晶硅,其硅含量为95%~99%,然后再在结晶炉中用氯气与粗硅合成四氯化硅:
用此方法制得的SiCl4含有BCl3、SiHCl3、PCl3等杂质,需进一步精馏提纯,才能得到精细的SiCl4。由于石英光纤原材料资源丰富,化学稳定性非常的强,除氢氟酸外,其他各种化学试剂都对它无可奈何。因此,已实际应用在各种通讯线路上,除石英光纤外,其他类型的光纤材料也在大力开发之中。
目前通讯设备是光纤最大的应用“客户”,也就是大家常说的光纤通讯,光纤通讯信息容量很大,10根光纤组成的像铅笔一样大小的一支电缆每天可通话38100人次,而直径3英寸(3×2.54cm),由3600根铜线组成的电缆每天可只能通话1800人次。另外,光纤通讯不仅重量轻、抗干扰、耐腐蚀,而且具有良好的保密性。光线的原材料丰富,可大量节约有色金属。因此光纤是一种极为理想的通讯材料。
用光纤制成的光学元器件,如传光纤维束、传像纤维束、纤维面板等,能发挥一般光学元件所不能起的特殊作用。此外,利用光导纤维与某些敏感元件组合或利用光导纤维本身的特性,可以做成各种传感器,用来测量温度、电流、压力、速度、声音等。它与现有的传感器相比,有许多独特的优点,特别适宜于在电磁干扰严重、空间狭小、易燃易爆等苛刻环境下使用。
(二)激光材料
作为20世纪的重大发明之一的激光——自从1960年科学家红宝石做工作物质首次振荡而被发现以后,在激光的基础理论、激光的应用、激光材料和器件的研究等各个方面都有了迅速的发展。激光是利用受激辐射原理,在谐振腔内振荡出的一种特殊光。它同普通光相比,具有良好的单色性、相干性和高亮度的特点,在科学技术上有着广泛的用途。
用于生产激光的材料有固体、气体和液体三种,叫做激光工作物质,这里着重介绍固体激光材料。固体激光工作物质包括两个组成部分:激活离子(真正产生激光的离子)和基质材料(传播光束的介质)。形成激活离子的元素有三类:第一类是过渡元素如锰、铬、钴、镍、钒等;第二类是大多数稀土元素如钕、钬、镝、铒、铥、镱、镥、钆、铕、钐、镨等;第三类是个别的放射性元素如铀。目前应用最多的激活离子是Cr3+和Nd3+。基质材料有晶体和玻璃,每一种激活离子都有其对应的一种或几种基质材料。例如,Cr3+渗入氧化铝晶体中有很好的发生激光的性能,但掺入到其他晶体或玻璃中发光性能就很差,甚至不会产生激光。目前已研制出的同体激光工作物质有上百种之多,但有实际使用价值的主要有:红宝石(Al2O3∶Cr3+),掺钕钇铝石榴石(Y3 Al5O12∶Nd3+),掺钕铝酸钇(YAlO3∶Nd3+)和钕玻璃四种。
红宝石是以Al2O3晶体为基质材料,掺入质量分数为5×10-4的Cr2O3,激活离子是Cr3+;是最早振荡出激光的材料,输出激光波长为694.2纳米的红色光。制备红宝石单晶用的原料必须有很高的纯度,通常用重结晶法提纯后的铵明矾[NH4Al(SO4)2·12H2O]和重铬酸铝[(NH4)2Cr2 O7],将它们以一定比例混合,加热到1050℃~1150℃,这时发生下列反应:
由上面的反应制得的是Al2O3和Cr2O3的混合物,而后再用火焰法或引上法就制成红宝石单晶。
分别掺入Y3Al5O12和YAlO3基质材料,再掺入不同浓度的Nd3+的作为激活离子的激光工作物质,就能制得钕钇铝石榴石和掺钕铝酸钇。
钕玻璃的激活离子是Nd3+,以K2O-BaO-SiO2成分的玻璃为基质材料时,产生激光的性能较好。用玻璃作同体激光工作物质的最大优点是,可以熔制出尺寸大、光学均匀性良好的材料,而且激活离子的质量分数可以提高到0.02~0.04。在核聚变的研究中,用钕玻璃激光器作为引发聚变反应的强光源取得了有效的成果。
六、纳米材料
从物质的形态上来说,材料在大多数的情况下处于固态,其颗粒大小一般在微米数量级,一个颗粒包含着无数原子和分子,材料在这里显示的是大量分子结合起来的宏观性质。当用特殊的方法把颗粒尺度大小加工到纳米数量级的时候,则一个纳米级颗粒所含的分子数大大地减少,这时纳米材料的定义就显而易见了,即由颗粒尺度为纳米数量级(1~100纳米)的超细微颗粒组成的晶体材料就是我们通常所说的纳米材料。纳米材料在结构上与常规的晶态和非晶态材料有很大的差别。由于纳米材料的粒子是超细微的,粒子数多,表面积大,而且处于粒子界面上的原子比例极大,一般可占总原子数的50%左右,这就使纳米材料具有特殊的表面效应、界面效应、小尺寸效应、量子效应等,因而呈现出一系列独特的物理、化学性质,在电子、冶金、化学、生物和医学等领域展示了广泛的应用前景。
各种物质在纳米状态下的性质与其在通常的状况下有很多的不同。例如,在通常的情况下,金的熔点是1064℃,而纳米金的熔点只有330℃,降低了近700℃;又如纳米级银粉的熔点由金属银的962℃降低为100℃。纳米金属熔点的降低不仅使低温烧结制备合金成为现实,还将为不互熔金属冶炼成合金创造条件。
由于纳米材料中的离子的半径非常的小,所以其表面积非常的大,表面活性高,可制造各种高性能催化剂。例如,Ni或Cu-Zn化合物的纳米颗粒对某些有机化合物的氢化反应是极好的催化剂,可替代昂贵的铂或钯催化剂;纳米铂黑催化剂可使乙烯氢化反应的温度从600℃降至室温;利用纳米镍粉作火箭固体燃料反应触媒,燃烧效率可提高100倍。此外,其催化的反应选择性还表现出特异性。如用硅载体镍催化剂对内醛的氧化反应表明,镍粒直径在5纳米以下时,反应选择性发生急剧变化,醛分解反应得到有效控制,生成酒精的转化率急剧增大。
由于性脆、烧结温度高等缺点,陶瓷材料的应用范围受到了很大的限制;但是如果把陶瓷上升到纳米级别,则会有很好的韧性和延展性能。经过不断的研究表明:TiO2和CaF2纳米陶瓷材料在80℃~180℃范围内可产生约100%的塑性变形,韧性极好,而且烧结温度降低,能在比大晶粒样品低600℃的温度下达到类似于普通陶瓷的硬度。这些特性使纳米陶瓷材料在常温或次高温下进行冷加工成为可能。如果在次高温下将纳米陶瓷颗粒加工成型,然后作表面退火处理,就可以得一种表面保持常规陶瓷硬度,而内部仍具有纳米材料延展性的高性能陶瓷。
具有优良性能的纳米材料还广泛的应用于细胞分离、细胞染色等生物医药领域。纳米粒子要比红血球(6~9um)小得多,所以能在血液里自由运动。因此,注入各种对机体无害的纳米粒子到人体的各部位,可检查病变和进行治疗。研究纳米生物学可以在纳米尺度上了解生物大分子的精细结构及其与功能的关系,获取生命信息,特别是细胞内的各种信息。利用纳米传感器,可获取各种生化反应的生化信息和电化学信息。
纳米材料的出现给物理、化学、生物等许多学科带来的不仅是活力,更多的是挑战,纳米科学技术在迎接给予和挑战的同时必将发展成为21世纪最重要的技术,人们将在纳米尺度上重新认识和改造客观世界。