“黑烟囱”之谜

唤醒沉睡在海底的宝藏

用人工地震听诊

国外海洋产业中独占鳌头的是海洋石油和天然气的勘探开采,20世纪90年代初这门新兴海洋产业的产值占海洋产业总产值的一半。而我国的海洋油气开发的产值才占海洋产业总产值的5%。

img192

海上石油开采平台

海洋石油、天然气沉睡在海底地层里亿万年,把它唤醒,将给人类带来能量,带来发展社会、经济的动力。

2007年1月1日,世界石油探明储量1804.7亿吨,天然气探明储量175万亿立方米,石油年产量36.24亿吨。发达国家发电靠石油,开动汽车靠石油,人们不能设想如果没有石油怎么办。这种危机感推动着海洋油气开采技术的飞速发展。科学家和工程师克服巨大的困难去征服海洋,由浅海到深海,由海湾潟湖到开阔的大洋,从浅地层到深地层,由近及远,终于在30多年内建立起一个庞大的高新技术密集的海洋油气开发产业。海湾(波斯湾)国家沙特阿拉伯等靠海上石油致富。文莱靠海上石油一下子从一个落后的国家变成东南亚最富的国家。北海的石油给岩石嶙峋的挪威和经济已没有活力的英国输了血。我国从20世纪60年代开始在渤海开采海底石油,可是由于资金不足及没有掌握先进技术等原因,发展不快。改革开放以后,引进外国资金、先进技术和先进的管理方法,才迎头赶上。2005年我国海洋原油产量3175万吨,预计到2010年我国海洋原油产量将超过5000万吨。

img193

海上石油开采

医生给人检查身体,要用听诊器在人体某些部位倾听,从呼吸、心跳的声音判断这个人是不是健康,哪个地方出了毛病。油气储藏在海底地层里,有些地方地层之间有缝隙,而缝隙下面的地层比较紧密,油渗不下去,油气就在缝隙里聚集。有些地方地层之间有比较松的沙层,地底下有很大的压力,油气在压力的作用下会聚在沙层里。有些地方碰巧这种含油气地层有露头,油气从海底通过海水冒出海面,从这种显示可以知道海底下有油气。但是,这种机会很难遇到。一般情况下,油气宝藏并没有任何迹象可寻。这时,就得学习医生,给地球听诊。

地球上发生地震时,地震波从震源发出来,向远处传播,地震观测者从埋在地下的地震仪上记录的地震波可以判断出在什么地方发生了多少级的地震。地震仪上记录的波形还可以说明地震波在传播过程中碰到过什么样的地层变化。地震波和声波一样,也是一种振动波,但是频率十分低。它通过均匀的地层时,方向不变,只是一路上有些损失,越来越弱。低频的地震波在地层里传播时衰减很慢,可以传播相当远,如果遇到两种性质不同的地层之间的界面,就有一部分波被反射或散射了,方向也会改变。用这个原理,从地震波带来的信息可以探出地层的结构。地震不是天天都有,而且往往不在人们需要探查的地方发生。人们只能人工制造地震,这样,震源的位置可以选择,就能随心所欲地研究地层结构了。

img194

海底地震示意图

地震是在地层里发生的,人们不能钻到海底地层里去诱发地震。产生人工地震时,从海面上的地球物理勘探船上投下炸弹,使它在一定的深度爆炸,爆炸波传到海底表面,一部分透到地层中去,激起地层震动,这就是人工制造地震的办法。炸弹不容易控制,还有一定的危险性,于是设计了爆炸声源。这种地震源有许多种,最简单的是模仿雷电,制造两个电极,用高电压在极间放电,产生很强的电火花,同时产生爆炸波。让压缩空气或者燃烧产生的高压气体突然释放出来,推动活塞,或者使它穿过小孔以后突然膨胀,也能产生爆炸波,这种设备叫做气枪。很强的爆炸波遇到海底地层的交界面就分为两部分,一部分被反射回来,另一部分继续前进,但是折射了一个角度,到了下一个交界面再反射,这些从各个界面反射回来的波经过地层重新回到海水中,依次传到海面附近。在勘探船的尾部拖着的漂浮电缆,其实是一串接收换能器,各个接收换能器在不同的时刻接收到不同地层界面反射、折射回来的波。把这些成百上千的接收换能器接收到的信号集中到勘探船上的记录器和计算机中,每个地层界面都在记录图中反映成一条线,一目了然。地质专家从记录图就可以判断出有没有油气田。在海底表面上设计好的地方布上自动记录的地震仪,这些地震仪可在不同时间从不同方向记录人工地震所产生的地震波。要想准确地探测,一根漂浮电缆不够,一个地震源也不够,可以用多个地震源顺序引爆,船后拖曳几根漂浮电缆。这样,接收到的信息可以通过计算机运算后画出立体的图像,工作效率也提高了。对于复杂的地质结构,只看一个平面,不能确认地层结构和油气资源,可能把油田漏掉,从立体图上看就万无一失了。经验丰富的专家也难免发生错误或疏忽,于是人们把专家判断地层的集体智慧和经验输进计算机,研制出“专家系统”,用它来解释地震记录,既节省人力,又可以避免错误。

img195

海底地层示意图

我们在前面介绍过地层剖面仪,可以用声波从垂直方向,也就是从上方探查地层构造,船向前航行,记录出来的就是航线以下的地层情况。用地层剖面仪探查的地层深度比用地震法浅得多,因此也细致一些。

根据地球物理勘探船上记录下来的地震波形图就断定海底有没有石油还过于武断,再说也没有办法精确计算储量。但是有了这种客观的知识,就可以选择最有希望的站位打探井了。选择探井位置是一件风险很大、需要深思熟虑的事,如果考虑不周,选错地方,几千万元的投资就白白没了。打探井时用旋转的钻头引导空心的钻杆向地层钻进,从空心钻杆中取出岩芯。在实验室里用化学方法化验岩芯的成分,用电子显微镜观察它的结构,可以从中分析出结果。现代化的钻井里有力学的、电磁的和声学的传感器,可同时把井里的情况测量出来,传到井上,包括地层分界、各地层的力学性质和电磁学性质、地下的压力和温度等。探井里的压力高达10兆帕以上,温度高达100℃以上,对测量用的传感器提出很高的要求。把井由自动测得的结果与从岩芯分析得到的结果结合起来研究,就可以得到这口探井的位置有没有油,有多少油,开采时应该怎样设计油井等必要的知识了。

海底矿山

img196

锆英石

在陆地资源日趋枯竭的今天,人类开发海洋的欲念更加强烈,走进深海大洋的步伐更加坚定。那么深海大洋究竟有哪些资源呢?海洋的资源究竟有多少?据有关资料显示,海洋中有镁1800万亿吨,钾500万亿吨,锰4000亿吨,镍164亿吨,锌140亿吨,铜41.6亿吨,钴58亿吨,钒26.8亿吨,银5亿吨,铯6亿吨,铷1900亿吨……

我们尚无法断定这些数字的准确性,但是我们可以断言:海洋是世界上最富有的矿山。

与陆地相比,海洋资源惊人的丰富。浩瀚的大海中,蕴藏着许多种元素,诸如金、镁、铝、钾、钙、锶、溴、硫、铜、锡、钨等,应有尽有。海洋的锰资源是陆地的68倍,镍资源是陆地的274倍,海洋钴矿是陆地的967倍,海洋铜矿是陆地的22倍。更为惊人的是,海底的铀竟是陆地的2000倍。海洋还是一个巨大的原子能库呢。按目前世界的工业消耗量计算,仅太平洋锰结核中的金属钴就可供全世界使用30万年,其中的镍和锰可供全世界使用2万年,其中的铜可以使用900多年。此外,海底的多金属结核有3万亿吨,石油2800亿吨,天然气140亿立方米。海滨沉积物中也有许多贵重矿物,如:含有发射火箭用的固体燃料钛的金红石,含有火箭、飞机外壳用的铌和反应堆及微电路用的钽的独居石,含有核潜艇和核反应堆用的耐高温和耐腐蚀的锆铁矿、锆英石,某些海区还有黄金、白金和银等。我国近海海域也分布有金、锆英石、钛铁矿、独居石、铬尖晶石等经济价值极高的砂矿。遗憾的是,时至今日,人类还只能从海水中提取极少量的元素,还有很多种元素,人类只能望洋兴叹。不过,随着人类向海洋探宝进军步伐的加速,这些海底宝藏终将服务于人类。

img197

铬尖晶石

水下黄金知多少

海里有黄金吗?回答是肯定的,海中不仅有黄金,而且很多。据海洋科学家的研究报道,大海拥有13.7亿立方千米的水,与高出水平面的陆地体积相比,竟然高达18倍!也就是说,如果把地球上露出海平面以上的陆地全部砍掉,并把它们填到大海中,也只能填满海洋水体的十八分之一。

平均每一吨海水中含有0.02~0.06毫克的黄金。尽管海水中黄金的含量不高,但海水的体积很大,整个海洋中的黄金储量还是多得惊人,估计约有600万吨。

有位德国科学家花了几十年的时间,反反复复地进行从海水里提取黄金的试验。几十年后,他伤心地承认,他失败了。不是因为大海里没有黄金,而是因为提取海洋黄金的成本太高了,他不得不放弃他的研究和梦想。相信随着科学的进步,海洋里的黄金总有一天会成为人类的财富。

深海锰结核

img198

锰结核

锰结核是一种多金属结核,它含有锰、铁、镍、钴和铜等几十种元素。锰结核也称为多金属结核或锰矿球。锰结核遍布在世界各个海域,据估计,全球锰结核半数以上在太平洋的洋底,约17000亿吨。太平洋3000~6000米水深的海底表面是世界最大的锰结核基地。我国已在太平洋海底调查200多万平方千米的面积,其中有30多万平方千米为有开采价值的远景矿区,联合国已批准其中15万平方千米的区域分配给我国作为开采区。还有一种矿藏,名叫富钴锰结核,它储藏在3000~4000米深的海底,比锰结核容易开采,美国、日本等国已为此设计了一些开采系统。

由于锰结核内含的各种物质是现代工业所急需的原料,为此开采海底锰结核迫在眉睫。美国的锰矿全靠进口,所以对锰结核的开发最为重视。目前美国在大洋锰结核开发技术方面处于领先地位。

img199

科学家正在对锰结核矿进行勘探

追溯锰结核发现的历史,应该从100多年前的一次海洋调查谈起。1873年2月18日,正在做全球海洋考察的英国调查船“挑战者”号,在非洲西北加那利群岛的外洋海底,采上来一些土豆大小深褐色的物体。经初步化验分析,这种沉甸甸的团块是由锰、铁、镍、铜和钴等多金属化合物组成的,而其中氧化锰最多。剖开来看,发现这种团块是以岩石碎屑,动物、植物残骸的细小颗粒及鲨鱼牙齿等为核心,呈同心圆一层一层长成的,像一块切开的洋葱头。由此,这种团块被命名为“锰结核”。锰结核的大小尺寸变化也比较悬殊,从几微米到几十厘米的都有,重量最大的有几十千克。

锰结核不仅储量巨大,而且还会不断地生长。生长速度因时因地而异,平均每千年长1毫米。以此计算,全球锰结核每年增长1000万吨。锰结核堪称“取之不尽,用之不竭”的可再生多金属矿物资源。在陆地资源日趋枯竭的今天,海底锰结核的存在实在令人类振奋不已。

锰结核的成因

锰结核资源来自全宇宙,来自天上,来自海底,来自大陆。宇宙每年要向地球降落2000~5000吨宇宙尘埃。宇宙尘埃中含有许多金属元素,分解后部分进入海水;大陆或岛屿的岩石风化后也能释放出铁、锰等元素,其中一部分被海流带到大洋沉淀;当火山岩浆喷发,产生的大量气体与海水相互作用时,从熔岩中搬走一定量的铁、锰,使海水中锰、铁越来越多;海洋浮游生物体内富集微量金属,它们死亡后,尸体分解,金属元素也会进入海水。当这些金属元素沉积海底后,在海水巨大的压力作用下,带极性的分子在电子引力作用下彼此吸附,并与海底火山喷出的物质和海底的鱼类残骸相结合,经过漫长的历史演变而形成锰结核。

img200

水下5000米洋底的锰结核

锰结核的开发

20世纪初,美国海洋调查船“信天翁”号在太平洋东部的许多地方采到了锰结核,并且得出初步的估计,认为太平洋底存在锰结核的地方,其面积比整个美国都大。尽管如此,当时这个消息并没有引起人们多大的重视。

斗转星移,半个多世纪后,1959年,美国科学家约翰·梅罗发表了有关锰结核商业性开发可行性的研究报告,锰结核巨大的商业利益引起了许多国家政府和冶金公司的关注。此后,海洋锰结核资源的调查、勘探才大规模展开,开采、冶炼技术的研究试验也得以迅速推进。在这方面,投资力度逐年增加,取得显著成绩的有美国、英国、法国、德国、日本、俄罗斯、印度及中国等。到20世纪80年代,全世界已涌现了100多家从事锰结核勘探开发的公司,并且成立了8个跨国集团公司。

锰结核开采方法有许多种,比较成功的方法有链斗式、水力升举式和空气升举式等。

链斗式采掘机就像旧式农用水车那样,利用绞车带动挂有许多戽斗的绳链,不断地把海底锰结核采到工作船上来。

水力升举式海底采矿机械,是通过输矿管道,利用水力把锰结核连泥带水地从海底吸上来。

空气升举式同水力升举式原理一样,只是直接用高压空气连泥带水地把锰结核吸到采矿工作船上来。

img201

开采锰结核

20世纪80年代,美国、日本、德国等国矿产企业组成跨国公司,使用这些机械,取得日产锰结核300~500吨的开采成绩。在冶炼技术方面,美国、法国和德国等也都建成了日处理锰结核80吨以上的试验工厂。总之,锰结核的开采、冶炼,在技术上已不成问题,一旦经济上有利可图,新的产业便会应运而生,进入规模生产。

img202

海洋矿产资源开采示意图

我国从20世纪70年代中期开始进行大洋锰结核调查。1978年,“向阳红05”号海洋调查船在太平洋4000米水深的海底首次捞获锰结核。此后,从事大洋锰结核勘探的中国海洋调查船还有“向阳红16”号、“向阳红09”号、“海洋04”号、“大洋1”号等。经多年调查勘探,我国在夏威夷西南,处于北纬7°~13°,西经138°~157°的太平洋中部海区,探明一块可采储量为20亿吨的富矿区。为了维护我国在国际海底的权益,我国积极参与国际海底及其资源的开发利用与保护。自1991年以来,在中国大洋矿产资源研究开发协会的组织下,我国先后组织了16次远洋考察,在太平洋国际海底圈定了7.5万平方千米的多金属结核矿区,并与国际海底管理局签订了合同,争得了一块属于中国的金属结核矿区,使它成为中国在太平洋中一块宝贵的资源。中国继印度、法国、日本、俄罗斯之后,成为第5个注册登记的大洋锰结核采矿“先驱投资者”。中国大洋矿产资源研究开发协会也由此成为我国远洋考察与开发研究的主力军。

日本是一个陆地资源极其贫乏的国家,自然对海底锰结核兴趣极大,他们对海底锰结核开发做了多年的研究与调查工作,1970年在太平洋塔希提岛附近3700米水深的洋底试开采成功。1974年以来,日本以国际贸易部为首的数家企业公司组成深海矿物资源开发协会,负责主持有关锰结核的开发和利用。日本由通产省主持大洋的矿藏资源开发,投资2万亿日元,于1989年研制成功了锰结核液压式开采设备。日本由近50家公司联合进行大洋矿产资源的勘查,其投入之高,堪称世界第一。此外,前苏联曾借助两艘5000多吨的调查船“勇士”号及“门捷列夫”号,进行过海上调查研究。法国和德国对锰结核的开发也投入了一定的财力和人力。

海底“可燃冰”

冰是透明的水冻结而成的,很常见。然而世界上还有一种冰,人们对它所知甚少,它就是“可燃冰”。可燃冰还有另一个名字,叫做“天然气水合物”。

img203

可燃冰的发现早在20世纪30年代

“可燃冰”三个字道破了它的用途——可以燃烧,它是继煤、石油和天然气后,人类发现的又一种新型的能源。就外表而言,它酷似冰,是一种透明的结晶。中国科学院汪品先院士曾在接受《科技日报》记者的采访时介绍,可燃冰的发现早在20世纪30年代。当年,人们发现天然气输气管道内形成白色冰状固体填积物,这种天然气水合物给天然气输送带来很大麻烦,石油地质学家和化学家便对如何消除这种天然气水合物进行了研究。20世纪60年代前,前苏联在开发麦索亚哈气田时,在地层中也发现了这种气体水合物,这时人们才开始把气体水合物作为一种燃料能源来研究。此后不久,西伯利亚、北斯洛普、墨西哥湾、日本海和印度湾等地方相继发现了天然气水合物。人们意识到,天然气水合物是一种具有全球陸分布的潜在能源,于是掀起了20世纪70年代以来的天然气水合物研究热潮。这种天然气水合物就是可燃冰。

img204

海底寻找可燃冰

可燃冰的形成有三个条件,首先是温度不能太高;第二是压力要够,但不需太大,0℃时,30个大气压以上就可能生成;第三是要有气源。据估计,陆地上20.7%和大洋底90%的地区具有形成可燃冰的有利条件。绝大部分的可燃冰分布在海洋里,其资源量是陆地上的100倍以上。可燃冰中的甲烷大多数是当地生物活动而产生的。海底的有机物沉淀经历了漫长的时间后,死的鱼虾、藻类体内都含有碳,经过生物转化,可形成充足的甲烷气源。另外,海底的地层是多孔介质,在温度、压力和气源三项条件都具备的情况下,会在介质的空隙中生成甲烷水合物的晶体。

可燃冰的主要成分是甲烷和水。甲烷是一种无色、无味的可燃气体。它的形成与海底石油、天然气的形成过程相仿,而且密切相关。埋于海底地层深处的大量有机质在缺氧环境中,厌气性细菌把有机质分解,最后形成石油和天然气(石油气)。其中许多天然气又被包进水分子中,和水在温度2℃~5℃内结晶,在海底的低温与压力下形成可燃冰。

在不同的海域,环境条件各异,因此,可燃冰存储的水深也各不相同。在赤道海区,可燃冰存储在400~650米水深的海域,但在南、北两极,可燃冰存储在100~250米海深的沉积岩中。显而易见,这是极区与赤道的水温条件不同所致。

可燃冰极易燃烧,燃烧产生的能量比煤、石油、天然气产生的都多得多,而且燃烧以后几乎不产生任何残渣或废弃物。不难想象,当人们解决了可燃冰的开发技术后,可燃冰就可以取代其他日益减少的化工能源(如石油、煤、天然气等),成为一种主要的能源。我国的海洋开发方面的研究人员已经开始关注可燃冰,有的已开始对这一能源进行研究。然而,可燃冰的开采谈何容易,时至今日,石油天然气的开发技术已经比较成熟,而可燃冰的开发还有许多问题有待解决。如果将可燃冰从深海简单地提升,那么在升出海水的过程中,随着水深变浅,水的压力降低,水的温度升高,可燃冰会融化,可燃冰中的甲烷会释放出来,而可燃冰中的甲烷含量要超过自身体积的100多倍,有可能引起可燃冰灾害,还可能造成温室效应,影响大气温度。然而无论遇到多大的困难,人类总是会向可燃冰的藏身之地进军,并终将解决开采可燃冰的技术问题。

举世关注可燃冰

据估计,全球可燃冰的储量是现有石油天然气储量的两倍。目前,在世界各大洋中已经查明的可燃冰存储区已有60多处。据测算,仅在我国的南海,可燃冰资源量就达相当700亿吨石油,约相当于我国目前陆上油气资源量总数的二分之一。在世界油气资源逐渐枯竭的情况下,可燃冰的出现燃起了人类对新能源的无限渴望。美国、俄罗斯、日本甚至还有印度都先后投巨资对可燃冰进行研究。美国总统科学技术委员会专门提出建议研究开发可燃冰,参议院、众议院有上千人提出议案,支持可燃冰的开发研究。目前美国每年用于可燃冰研究的财政拨款达上千万美元。

“黑烟囱”之谜

1977年10月,美国伍兹霍尔海洋研究所所属的深海潜水器“阿尔文”号在加拉帕戈斯群岛海域率先发现海底热泉生态区。这个海底热泉生态区位于东太平洋,水深2500米。这里也是地球上地壳最薄的地方。热泉生态区热液的喷出速度高达每秒数米。热液喷出后,遇到了冷的海水而迅速降温,所带出的矿物质结晶而形成筒状,由于含硫化物较多而呈黑色,高度可达10米,如同黑烟囱耸立于洋底。这些黑烟囱迅速生长,又很快倒下,形成一片金属硫化物矿床。

img205

黑烟囱

后来,海洋学家又先后在墨西哥西部沿海以北的北纬10°海底和北纬21°的胡安·德富卡发现了海底中耸立着许多黑色的“烟囱”,并为此取名“黑烟囱”。海洋地质学家仔细研究了洋底热液喷出口,他们发现,这些喷出口实际上是洋底的间歇喷泉。炽热的热泉从洋底裂缝里流出来,虽然温度很高,但不会沸腾,这是因为在2000多米水深的海底,其压力相当于200多个大气压,如此高的压力下,热液是不会沸腾的。热液喷出后很快冷却,热液中含有的大量矿物质,包括锌、铜、铁、硫磺混合物和硅等,散落在海床上,越积越厚,最后形成烟囱状的山峰。这些人间罕见的奇异景观引起了科学家们极大的兴趣。

科学家以距西雅图以西480千米太平洋海底的“黑烟囱”为例,对“黑烟囱”的成因进一步作了解释。科学家们认为,由于胡安·德富卡板块不断地与太平洋板块碰撞,碰撞的结果令海底地层出现裂缝,继而产生了裂缝扩张,于是地球内部的热液喷涌而出,这些热液冷却后又形成了新的海底地壳。海水在地心引力作用下倾泻而出深入地裂中,同时形成海底环流将熔岩中大量的热能和矿物质携带和释放出来。当从地裂中涌出的炽热的海水再度遇上冰冷的海水中时,便形成了一缕缕漆黑的烟雾。矿物质遇冷收缩,最终沉积成烟囱状堆积物,这就是海底“黑烟囱”的成因。

img206

“黑烟囱”含有大量金属硫化物

“黑烟囱”含有大量金属硫化物,在已发现的30多处矿床中,仅属于美国的加拉帕戈斯裂谷中的硫化物的储量就达2500万吨,其开采价值达39亿美元。从多处海底热泉采样分析来看,这些硫化物含有的矿物元素种类繁多且品位极高。发生这种热液喷出现象海域的平均深度为2225米。热液矿藏又称为海底金属泥。海底热液矿藏中含有大量金属的硫化物,这些发现引起了世界各国的关注,而红海的重金属泥则是迄今世界上已发现的最有经济价值的热液沉积矿床。

多金属硫化物矿床是数千年来在海底热泉附近积聚而成的。海底热液位于海底活火山山脉各处,而这些火山山脉蔓延全球所有的海洋盆地。多金属硫化物矿床还在与火山列岛毗连的地点形成,例如太平洋西部边界沿线的列岛。

另一类新发现的海洋矿物资源是富钴结壳。这种矿壳沉积于水下死火山侧面,历时数百万年才形成,其矿物质来自海水中溶化的金属,而这些金属则是由海水和海底热泉提供的。

热泉使金属硫化物沉积集中,同时又使各种金属散布海洋,促进了富钴结壳的积聚。

“黑烟囱”与生命起源

自古以来,人类曾千百次地问自己,我们来自何方?最早,人们认为生命是神创造的奇迹,甚至有些人认为生命是从岩石缝中钻出来或来自其他的天体。

img207

黑烟囱是海底热喷口

前苏联科学家奥巴林提出了生命起源之说。奥巴林认为,生命来自海洋。生命首先从无机物开始,继而变成简单的有机物,再从简单的有机物变成更为复杂的有机物。海洋中有水、氢和氨等,它们相互作用形成了醇类、简单的糖类和氨基酸等物质,这是一个从无机物变成有机物的过程。后来又形成了氨基酸联结起来的蛋白质和淀粉等大分子的碳水化合物,继而,这些有机化合物的水滴从周围分离出来,再不断地从周围汲取各种物质,使这些水滴的内部逐步复杂化,而且逐步变大,大到一定程度再分裂增多,从而一步步进化为生命。总之,奥巴林的学说有三点是值得人们注意的:第一是生命来自海洋;第二是生命是从非生命的无机物逐步演变成有机物,进而成为更复杂的有机物;第三是生命的出现和演变经历了几十亿年漫长的历程。

img208

海底黑烟囱

确切地说,生命源自海洋中的无机物,而且唯有在海洋的环境条件下,生命才能形成。现在大多数科学家依然确信生命源自海洋,大海是人类生命真正的故乡。为此,研究海洋中的无机物对确认生命的起源意义重大。

美国影片《泰坦尼克号》向人类复现了一次举世闻名的大海难。影片生动地再现了冰海沉船的悲壮景象,同时描述了一对恋人动人的爱情故事,这部影片的导演就是詹姆斯·卡梅隆。

不久前,詹姆斯·卡梅隆突发奇想,要乘深潜器进入海底拍摄千古奇观,探索生命的起源。卡梅隆一行对海底“黑烟囱”进行了深入的调查,发现黑烟是海底火山喷射出来的。卡梅隆等人认为,要探索人类生命的起源,就必须从这些物质开始。卡梅隆将其深海所见拍摄成一部纪录片。我们期待着卡梅隆等人的研究结果,也许人类可以在海底找到生命起源的奥秘,彻底地解开生命起源之谜。

黑暗生物圈的发现令世人震惊,人们不禁要问,这些生物靠什么生存呢?那里根本没有阳光,它们又是怎么生存的?原来这些生物与陆地上靠光合作用形成的生物相反,陆地上光合成的生物是从阳光中获得生存能量的,而黑暗生物圈的生物是从化学物质中获得生存能量的。热泉提供了来自地球内部的化学能量,生物就可以借助这些能量生长。世界上确有大量的生物在没有阳光的世界里繁衍生息,它们不是靠光合作用,而是靠化学合成。这种新的观点令人们对生命的认识发生了革命。詹姆斯·卡梅隆在他的纪录片《深海异类》中说:“这种聚会在下面的黑暗中已进行了几十亿年,与我们毫无关系,即使太阳明天消失,它们也不在意。”

也许人们还会问,海底火山旁的喷口和裂缝处的热液中含有大量的硫化氢,陆地上的大多数生物如果吸入硫化氢必将中毒身亡,那么那些海底生物为什么不会中毒呢?这个问题经过一些海洋生物学家的研究发现,那些海底生物与陆地生物不同,它们的体内具有一些特殊的结构和代谢形式,足以消除硫化氢的毒性。

研究海底热泉附近的生物群颇为重要。因为第一,这些生物具有工业和医药价值,它们将成为新型化合物的来源;第二,这些微生物中,也许包括原始的生命形式,这将有助于揭开人类生命起源的奥秘。

现在,越来越多的海洋生物学家确信,海底热喷口也许是在我们这个星球上研究生命起源最好的实验室。