二、解题方法
第一步,首先找出哪行、哪列、哪宫中的已知数最多,然后就从这些行、列、宫入手开始思考。例如,图5-7中在第四宫中已有2、3、4、5、8这5个数,尚缺1、6、7、9这4个数,我们就从该宫开始解题,先从第六行中的6向第四宫引目的数标线,得知(6,5)格、(7,2)格、(8,1)格中的数不能为6,在第四宫中只有(7,5)格中的数字为6。

图5-7
第二步,再看第七行,该行中已有3、4、5、6、8、9这6个数,尚缺1、2、7这3个数。因为第四宫已经有2了,所以(7,2)格中的数字不能为2。接下来再看(7,6)格,因为它所在的左斜第七列中已有2,所以(7,6)格中的数字也不能为2。这样,只有(7,8)格中的数字为2,如图5-8所示。

图5-8
第三步,转向看第三宫,该宫中已有2、3、4、8、9这5个数,尚缺1、5、6、7这4个数。我们可以用目的数标线法来做,即从第六列、第七列中的5出发,向第三宫引目的数标线,这样(5,5)格、(6,7)格、(7,6)格中的数字都不能为5,所以只有(6,9)格中的数字为5。由第四宫、第五宫中的6向第三宫引目的数标线,得到(5,5)格中的数字为6。由第二宫、第五宫中的2向第一宫引目的数标线,得到(3,5)格中的数字为2。由第四宫中的6向第二宫引目的数标线,得到(3,6)格中的数字为6,如图5-8所示。
第四步,由第五宫中4向第六宫引目的数标线,得到(3,4)格中的数为4,由第四宫中的8向第二宫引目的数标线,得到(4,6)格中的数字为8。由第二宫中的1向第一宫引目的数标线,得到(2,6)格中的数字为1。由第三宫中的4向第二宫引目的数标线,得到(5,6)格中的数字为4。由第五宫中的3向第六宫引目的数标线,得到(2,1)格中的数字为3,如图5-8所示。
第五步,由第二宫中的2向第二行引目的数标线,得到(2,3)格中的数字为2,则(2,9)格中的数字为8。由第四宫中的3向第一宫引目的数标线,得到(1,3)格中的数字为5,(1,2)格中的数字为3,如图5-8所示。
第六步,由第二宫中的6向第六宫引目的数标线得到(4,2)格中的数字为6。由第五宫的9向第四宫引目的数标线,得到(6,5)格中的数字为9。由第一宫中的1向第五宫引目的数标线,得到(6,1)格中的数字为1,(6,2)格中的数字是8。由第五宫中的1向第三宫引目的数标线得到(7,6)格中的数字为1,(6,7)格中的数字为7,如图5-9所示。

图5-9
第七步,由第三宫中的1向第四宫引目的数标线,得到(8,1)格中的数字为1,(7,2)格中的数字为7。由第五宫中7向第六宫引目的数标线,得到(3,3)格中的数字为7,(3,2)格中的数字为8。由第六宫中的7向第二宫引目的数标线,得到(4,3)格中的数字为7,如图5-9所示。
第八步,在右斜第二列中,已有3、5、7、8、6、1、2、4这8个数尚缺9,所以(3,7)格中的数字为9,则(3,8)格中的数字为3。解题到此结束,最终答案如图5-10所示。

图5-10