魔幻九宫图

魔幻九宫图

将编号从1到9的棋子按一定的方式填入图中的9个小格中,使得每一行、列以及两条对角线上的和都分别相等。

答案

九宫图中的九个数字相加之和为45。因为方块中的3行或列都分别包含数字1到9中的一个,将这9个数字相加之和除以3便得到“魔数”150。总的来说,任何n阶魔方的“魔数”都可以很容易用这个公式求出:

和为15的三数组合有8种可能性:

9+5+1;9+4+2;8+6+1;8+5+2;

8+4+3;7+6+2;7+5+3;6+5+4;

方块中心的数字必须出现在这些可能组合中的4组。5是唯一在4组三数组合中都出现的,因此它必然是中心数字。9只出现于两个三数组合中。因此它必须处在边上的中心,这样我们就得到完整的一行:9+5+1。3和7也是只出现在两个三数组合中。剩余的4个数字只能有一种填法。

记忆小窍门

解决这个问题,我们一定要牢记题目要求,根据已知条件求出未知。