参考文献
[1]Bocchino M, Sanduzzio A, Bariffi F. Mycobacterium tuberculosis and HIV[J].Monaldi Arch Chest Dis, 2000, 55(5): 381-388.
[2]Chen M, Gan H, Remold H G. A mechanism of virulence: virulent Mycobacterium tuberculosis strain H37Rv, but not attenuated H37Ra, causes significant mitochondrial inner membrane disruption in macrophages leading to necrosis[J]. The Journal of Immunology, 2006, 176(6): 3707-3716.
[3]Kaku T, Kawamura I, Uchiyama R, et al. RD1 region in mycobacterial genome is involved in the induction of necrosis in infected RAW264 cells via mitochondrial membrane damage and ATP depletion[J]. FEMS microbiology letters, 2007, 274(2): 189-195.
[4]Wallach D, Kang T B, Dillon C P, et al. Programmed necrosis in inflammation: Toward identification of the effector molecules [J]. Science,2016, 352(6281).
[5]Han J, Zhong C Q, Zhang D W. Programmed necrosis: backup to and competitor with apoptosis in the immune system [J]. Nature immunology,2011, 12(12): 1143-1149.
[6]Fiers W, Beyaert R, Declercq W, et al. More than one way to die: apoptosis,necrosis and reactive oxygen damage[J]. Oncogene, 1999, 18(54): 7719-7730.
[7]Fremond C M, Yeremeev V, Nicolle D M, et al. Fatal Mycobacterium tuberculosis infection despite adaptive immune response in the absence of MyD88[J]. The Journal of clinical investigation, 2004, 114(12): 1790-1799.
[8]Guttman M, Amit I, Garber M, et al. Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals[J]. Nature,2009, 458(7235): 223-227.
[9]Zhang D W, Shao J, Lin J, et al. RIP3, an energy metabolism regulator that switches TNF-induced cell death from apoptosis to necrosis [J]. Science,2009, 325(5938): 332-336.
[10]Sosna J, Voigt S, Mathieu S, et al. TNF-induced necroptosis and PARP-1-mediated necrosis represent distinct routes to programmed necrotic cell death[J]. Cellular and molecular life sciences, 2014, 71(2): 331-348.
[11]Zhang D W, Shao J, Lin J, et al. RIP3, an energy metabolism regulator that switches TNF-induced cell death from apoptosis to necrosis [J]. Science,2009, 325(5938): 332-336.
[12]Berghe T V, Vanlangenakker N, Parthoens E, et al. Necroptosis, necrosis and secondary necrosis converge on similar cellular disintegration features[J]. Cell Death & Differentiation, 2010, 17(6): 922-930.
[13]李庆伟, 王诗粤, 逄越. Necroptosis-一种新型程序性死亡机制的研究进展[J]. 辽宁师范大学学报: 自然科学版, 2014, 37(2): 238-245.
[14]Edinger A L, Thompson C B. Death by design: apoptosis, necrosis and autophagy[J]. Current opinion in cell biology, 2004, 16(6): 663-669.
[15]Sun L, Wang H, Wang Z, et al. Mixed lineage kinase domain-like protein mediates necrosis signaling downstream of RIP3 kinase[J]. Cell, 2012, 148(1-2): 213-227.
[16]宋必卫, 王璐. 细胞程序性坏死-一种细胞死亡新方式[J]. 生理科学进展,2013, 44(4): 281-286.
[17]Gengenbacher M, Nieuwenhuizen N, Vogelzang A, et al. Deletion of nuoG from the vaccine candidate Mycobacterium bovis BCG ΔureC:: hly improves protection against tuberculosis[J]. MBio, 2016, 7(3).
[18]Miller J L, Velmurugan K, Cowan M J, et al. The type I NADH dehydrogenase of Mycobacterium tuberculosis counters phagosomal NOX2 activity to inhibit TNF-α-mediated host cell apoptosis[J]. PLoS Pathog, 2010, 6(4): e1000864.
[19]Khan N, Minhas G, Sharma J. Cellular Stress Responses and Immunological Regulations During Mycobacterium tuberculosis Infection[M]//Mycobacterium Tuberculosis: Molecular Infection Biology, Pathogenesis, Diagnostics and New Interventions. Springer, Singapore, 2019: 203-220.
[20]Paik S, Choi S, Lee K I, et al. Mycobacterium tuberculosis acyl carrier protein inhibits macrophage apoptotic death by modulating the reactive oxygen species/c-Jun N-terminal kinase pathway[J]. Microbes and infection, 2019,21(1): 40-49.
[21]Khan N, Vidyarthi A, Javed S, et al. Innate immunity holding the flanks until reinforced by adaptive immunity against Mycobacterium tuberculosis infection[J]. Frontiers in microbiology, 2016, 7: 328.
[22]Sun J, Champion P A, Bigi F. Cellular and Molecular Mechanisms of Mycobacterium tuberculosis Virulence[J]. Frontiers in cellular and infection microbiology, 2019, 9.
[23]Aguilo N, Gonzalo-Asensio J, Alvarez-Arguedas S, et al. Reactogenicity to major tuberculosis antigens absent in BCG is linked to improved protection against Mycobacterium tuberculosis[J]. Nature communications, 2017, 8(1):1-11.
[24]Kroesen V M, Madacki J, Frigui W, et al. Mycobacterial virulence: impact on immunogenicity and vaccine research[J]. F1000Research, 2019, 8.
[25]Andersson A M, Larsson M, Stendahl O, et al. Efferocytosis of apoptotic neutrophils enhances control of mycobacterium tuberculosis in HIV -coinfected macrophages in a myeloperoxidase-dependent manner[J]. Journal of Innate Immunity, 2020, 12(3): 235-247.
[26]Wang F, Wang X, Wang C, et al. Suppression of Mcl‐1 induces apoptosis in mouse peritoneal macrophages infected with Mycobacterium tuberculosis[J].Microbiology and immunology, 2016, 60(4): 215-227.
[27]Chen M, Divangahi M, Gan H, et al. Lipid mediators in innate immunity against tuberculosis: opposing roles of PGE2 and LXA4 in the induction of macrophage death[J]. The Journal of experimental medicine, 2008, 205(12):2791-2801.
[28]Sorgi C A, Soares E M, Rosada R S, et al. Eicosanoid pathway on host resistance and inflammation during Mycobacterium tuberculosis infection is comprised by LTB4 reduction but not PGE2 increment[J]. Biochimica et Biophysica Acta(BBA)-Molecular Basis of Disease, 2020, 1866(3): 165574.
[29]Ruiz A, Sarabia C, Torres M, et al. Resolvin D1 (RvD1)and maresin 1(Mar1)contribute to human macrophage control of M. tuberculosis infection while resolving inflammation[J]. International immunopharmacology, 2019,74: 105694.
[30]刘云霞, 张万江. 结核分枝杆菌与巨噬细胞相互作用的研究进展[D]. ,2012.
[31]Rojas M, Olivier M, García L F. Activation of JAK2/STAT1-α-dependent signaling events during Mycobacterium tuberculosis -induced macrophage apoptosis[J]. Cellular immunology, 2002, 217(1-2): 58-66.
[32]de Bagues Maria-Pilar J, Dudal S, Dornand J, et al. Cellular bioterrorism: how Brucella corrupts macrophage physiology to promote invasion and proliferation[J]. Clinical Immunology, 2005, 114(3): 227-238.
[33]Wu X, Deng G, Li M, et al. Wnt/β-Catenin signaling reduces Bacillus Calmette-Guerin-induced macrophage necrosis through a ROS-mediated PARP/AIF-dependent pathway[J]. BMC immunology, 2015, 16(1): 16.
[34]Kauffman K D, Sallin M A, Sakai S, et al. Defective positioning in granulomas but not lung-homing limits CD4 T-cell interactions with Mycobacterium tuberculosis -infected macrophages in rhesus macaques [J]. Mucosal immunology, 2018, 11(2): 462-473.
[35]Melnik S, Dvornikov D, Müller-Decker K, et al. Cancer cell specific inhibition of Wnt/β-catenin signaling by forced intracellular acidification[J].Cell discovery, 2018, 4(1): 1-17.
[36]Sang C, Zhang Y, Chen F, et al. Tumor necrosis factor alpha suppresses osteogenic differentiation of MSCs by inhibiting semaphorin 3B via Wnt/βcatenin signaling in estrogen-deficiency induced osteoporosis[J]. Bone, 2016,84: 78-87.
[37]Devotta A, Hong C S, Saint -Jeannet J P. Dkk2 promotes neural crest specification by activating Wnt/β-catenin signaling in a GSK3β independent manner[J]. Elife, 2018, 7: e34404.
[38]Kaiser W J, Upton J W, Long A B, et al. RIP3 mediates the embryonic lethality of caspase-8-deficient mice[J]. Nature, 2011, 471(7338): 368-372.
[39]Lin J, Li H, Yang M, et al. A role of RIP3-mediated macrophage necrosis in atherosclerosis development[J]. Cell reports, 2013, 3(1): 200-210.
[40]Li J, McQuade T, Siemer A B, et al. The RIP1/RIP3 necrosome forms a functional amyloid signaling complex required for programmed necrosis[J].Cell, 2012, 150(2): 339-350.
[41]Dondelinger Y, Aguileta M A, Goossens V, et al. RIPK3 contributes to TNFR1-mediated RIPK1 kinase-dependent apoptosis in conditions of cIAP1/2 depletion or TAK1 kinase inhibition[J]. Cell Death & Differentiation, 2013,20(10): 1381-1392.
[42]Fulda S. Alternative cell death pathways and cell metabolism[J]. International journal of cell biology, 2013, 2013.
[43]Sena L A, Li S, Jairaman A, et al. Mitochondria are required for antigenspecific T cell activation through reactive oxygen species signaling[J].Immunity, 2013, 38(2): 225-236.
[44]Kotsias F, Hoffmann E, Amigorena S, et al. Reactive oxygen species production in the phagosome: impact on antigen presentation in dendritic cells[J]. Antioxidants & redox signaling, 2013, 18(6): 714-729.
[45]Hoidal J R. Reactive oxygen species and cell signaling[J]. American journal of respiratory cell and molecular biology, 2001, 25(6): 661-663.
[46]Forman H J, Torres M. Reactive oxygen species and cell signaling: respiratory burst in macrophage signaling[J]. American journal of respiratory and critical care medicine, 2002, 166(supplement_1): S4-S8.
[47]Fleury C, Mignotte B, Vayssière J L. Mitochondrial reactive oxygen species in cell death signaling[J]. Biochimie, 2002, 84(2-3): 131-141.
[48]Figiel Ł, Wraga M, Bednarkiewicz Z, et al. Direct comparison of the diagnostic value of point-of-care tests detecting heart-type fatty acid binding protein or glycogen phosphorylase isoenzyme BB in patients with acute coronary syndromes with persistent ST -segment elevation [J]. Kardiologia Polska(Polish Heart Journal), 2011, 69(1): 1-6.
[49]Prabhakaran K, Li L, Borowitz J L, et al. Caspase inhibition switches the mode of cell death induced by cyanide by enhancing reactive oxygen species generation and PARP-1 activation[J]. Toxicology and applied pharmacology,2004, 195(2): 194-202.
[50]Aon M A, Cortassa S, O'rourke B. Redox-optimized ROS balance: a unifying hypothesis[J]. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 2010,1797(6-7): 865-877.
[51]Ezoulin M J M, Liu Z, Dutertre-Catella H, et al. A new acetylcholinesterase inhibitor with anti -PAF activity modulates oxidative stress and pro -inflammatory mediators release in stimulated RAW 264.7 macrophage cells.Comparison with tacrine[J]. International immunopharmacology, 2007, 7(13):1685-1694.
[52]Qiao M, Zhao Q, Lee C F, et al. Thiol oxidative stress induced by metabolic disorders amplifies macrophage chemotactic responses and accelerates atherogenesis and kidney injury in LDL receptor -deficient mice[J].Arteriosclerosis, thrombosis, and vascular biology, 2009, 29(11): 1779-1786.
[53]Schreiber V, Dantzer F, Ame J C, et al. Poly (ADP-ribose): novel functions for an old molecule[J]. Nature reviews Molecular cell biology, 2006, 7(7):517-528.
[54]Amé J C, Rolli V, Schreiber V, et al. PARP-2, A novel mammalian DNA damage-dependent poly(ADP-ribose)polymerase[J]. Journal of Biological Chemistry, 1999, 274(25): 17860-17868.
[55]Farmer H, McCabe N, Lord C J, et al. Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy[J]. Nature, 2005, 434(7035):917-921.
[56]Huber A, Bai P, De Murcia J M, et al. PARP-1, PARP-2 and ATM in the DNA damage response: functional synergy in mouse development[J]. DNA repair, 2004, 3(8-9): 1103-1108.
[57]Wiman K G. p53 talks to PARP: the increasing complexity of p53-induced cell death[J]. Cell Death & Differentiation, 2013, 20(11): 1438-1439.
[58]Luo X, Kraus W L. On PAR with PARP: cellular stress signaling through poly(ADP-ribose)and PARP-1[J]. Genes & development, 2012, 26(5): 417-432.
[59]Elkholi R, Chipuk J E. How do I kill thee? Let me count the ways: p53 regulates PARP‐1 dependent necrosis[J]. Bioessays, 2014, 36(1): 46-51.
[60]杨瑞丽,孙佳楠,陆伟. 结核分枝杆菌对宿主巨噬细胞死亡方式的调控[J]. 生命科学,2013,25(11):1084-1088.