最纯粹的数学

最纯粹的数学

数学通常被人们(特别是被数学家)视为科学之王,而作为国王,它自然会回避与其他科学分支的“联姻”。举个例子,当戴维·希尔伯特被要求在“纯粹数学与应用数学联合大会”上发表开幕演讲,以帮助打消这两类数学家之间的明显敌意时,他却如此开篇:

“我们经常听说纯粹数学与应用数学之间存在相互的敌意。事实并非如此。纯粹数学与应用数学之间并无敌意。纯粹数学与应用数学之间从未有过敌意。纯粹数学与应用数学之间是不可能存在敌意的,因为,老实说,这两类数学之间没有任何共同点。”

但是,尽管数学喜欢纯粹,不喜欢接近其他学科,但其他学科,尤其是物理学,却很喜欢数学,并愿意尽可能拉近与数学的“兄弟情谊”。实际上,如今几乎所有纯粹数学的分支都已经被用来解释物理宇宙的这个或那个方面,包括抽象群理论、不对易算符的代数运算(简称不对易代数)和非欧几里得几何(简称非欧几何)等——这些领域一向被视为最纯粹的分支,不可能诉诸任何实际应用。

但迄今为止,有一个很大的数学分支除了刺激脑力发育外,始终未在任何方面发挥过作用,因此得以骄傲地保有“纯粹之王冠”。这就是所谓的“数论”(主要研究整数的性质),它也是纯粹数学思想中最古老和最复杂的产物之一。

虽然听起来可能很奇怪,但数论作为最纯粹的数学理论,从某种层面讲也是一种经验科学,甚至实验科学。实际上,它的大多数命题都源于尝试利用数字做各种不同的事,这一点和物理定律很像,后者源于尝试利用实物做各种不同的事。和物理学一样,数论的一些命题也已经在“数学上”被证实,另一些命题则完全来自于经验,至今仍在挑战最优秀的数学家大脑。

以质数问题为例,所谓质数,即一个大于1的自然数,除了1和它自身外,不能被其他自然数整除。1,2,3,5,7,11,13,17等都是质数,12则不是,因为它能写成2×2×3。

质数的数量是无限的吗,还是存在一个最大的质数,任何大于它的数都能写成前面的质数的乘积呢?这个问题最早由欧几里得本人提出,他也给出了很简洁的证明,证明了质数的数量无穷无尽,不存在一个所谓的“最大质数”。

为研究这个问题,让我们暂时假设质数的数量是有限的,并用字母N表示已知的最大质数。现在写出所有已知质数的乘积,然后加1。如下:

(1×2×3×5×7×11×13×…×N)+1。

由此得出的数字显然比所谓的“最大质数”N大得多。但很明显,这个数字无法被前面的任何质数(包括N)整除,因为从其构造方式看,该数字除以前面的任何质数,最后都会得出余数1。

因此,这个数字要么本身是质数,要么能被某个大于N的质数整除,无论如何,这都会打破我们一开始假定的N为最大质数的前提条件。

这种证明方法被称为归谬法,即反证法,是数学家最喜欢的方法之一。

知道了质数的数量无穷无尽后,我们就可以想一想,有没有什么简单的方法能一一列出所有质数,而无一遗漏呢?其中一种方法由古希腊哲学家和数学家埃拉托色尼首先提出,通常称为“埃拉托色尼筛选法”。具体做法就是写出完整的整数序列,1,2,3,4…然后先删除所有2的倍数,再删除所有3的倍数,然后删去所有5的倍数,依此类推。前一百个数字经埃拉托色尼筛选法筛选后的结果如图2-1所示,其中共有26个质数。目前,人类使用上述简单的筛选法,已经筛出了十亿以内的所有质数。

图2-1

但这个方法实在不够便捷,我们能否设计一个公式,让它帮我们快速自动地找出所有质数呢?然而,经过千百年的尝试,这样的公式仍未诞生。1640年,著名的法国数学家费马以为自己设计出了这样一个仅生成质数的公式。

其公式是:22n+1。其中,n代表1,2,3,4等连续的数字。

使用此公式,我们发现:

以上数字确实都是质数。但在费马宣布该公式约一百年后,瑞士德国数学家欧拉发现费马公式的第五次计算:225+1的结果4 294 96 297并非质数,它能写成6 700 417×641。如此,费马计算质数的经验法则被证明是错误的。

能得出许多质数的另一个著名公式是:n2-n+41,其中,n依然等于1,2,3…。经证明,当n代表1~40时,应用上述公式都会得出一个质数,但不幸的是,当n=41时它失败了。

事实上,(41)2-41+41=412=41×41,

这不仅不是个质数,还是个平方数。

另一个尝试的公式:

n2-79n+1 601,

一直到n=79都是成立的,但败在了n=80上面!

因此,人类要想创建一个只会得出质数的公式,还需继续努力。

另一个尚未被证实或证伪的有趣问题是1742年提出的哥德巴赫猜想,该猜想指出任一大于2的偶数都可写成两个质数之和。在数字不大的情况下,我们能轻松证明它的正确性,例如:12=7+5,24=17+7和32=9+3。但即使数学家们做了大量工作,他们至今仍未对这个猜想的正确性给出结论性的证据,同时也未能找到否定这个猜想的例子。直到1931年,俄国数学家施尼雷尔曼才朝着问题的解决方案迈出了建设性的第一步。他证明了每个偶数都可写成不超过30万个质数之和。另一位俄罗斯数学家维诺格拉多夫将施尼雷尔曼的“30万个质数之和”与要证明的“2个质数之和”之间的差距大大缩小,他直接证到了“4个质数之和”。但从维诺格拉多夫的“4个质数”到哥德巴赫的“2个质数”的最后两步似乎是最难的,没人知道要证明或证伪这个艰深的猜想或还要几年或几百年的时间。

综上所述,我们可能还要很久才能找到一个能自动生成所有质数的公式,甚至不确定能否找到这样一个公式。

我们现在可以问一个不那么厉害的问题:能否确定一段数值区间内的质数百分比?当数字增大时,这个百分比是否会大致保持恒定?如果不会,它会变大还是变小?我们可以尝试通过清点表中给定的质数数量,从经验角度回答这个问题。我们发现小于100的质数有26个,小于1 000的质数有168个,小于1 000 000的质数有78 498个,小于1 000 000 000的质数有50 847 478个。将这些质数个数除以相应的数值间隔,可得出表2-1:

表2-1

首先,表2-1显示质数个数的百分比随着数值范围的增大逐渐减小,但不存在一个质数个数消失的临界点。

有没有一个简单的数学公式来表示这种百分比随范围扩大而缩小的规律呢?答案是肯定的,而且这个有关质数平均分布的规律还是数学这门学问中最了不起的发现之一。这个规律很简单:从1到任意自然数N之间的质数的百分比大约等于N的自然对数[1]的倒数。N越大,这个规律越准确。

在表2-1中,第四列为N的自然对数的倒数。将这一列与前一列的数值进行对比,我们会发现两边的数值非常接近,而且N越大,越接近。

和许多其他数论命题一样,上面的质数定理最初也是凭经验得出的,而且很久都未得到严格的数学证明。直到19世纪末,法国数学家雅克·所罗门·阿达马和比利时数学家瓦莱·普桑终于成功证明了该定理,但证明方法过于复杂而艰深,在这里就不介绍了。

结束对整数的讨论前,我们不能不提一下著名的费马大定理,尽管该定理代表的一类问题与质数的性质没有必然联系。这个问题的根源可上溯至古埃及,当时,埃及的所有木匠都知道当三角形的三边比例为3∶4∶5时,一定有一个角是直角。实际上,古埃及人使用的木匠角尺就是一个这样的三角形,现在也有人称这样的三角形为埃及三角形。[2]

公元3世纪,亚历山大时期的丢番图提出了一个问题:是否只有3和4这两个整数的平方和等于第三个整数的平方?他发现也有其他数字组合(实际上,这种组合是无穷无尽的)具有相同性质,并给出了寻找此类组合的一般规则。如今,这类三个边都是整数的直角三角形被称为毕达哥拉斯三角形,埃及三角形是第一个此类三角形。毕达哥拉斯三角形的三边构成可简单表述为以下方程,其中x,y和z必须为整数:[3]

x2+y2=z2

1621年,皮埃尔·费马在巴黎买到丢番图的《算术学》一书的法语新译本,其中讨论了毕达哥拉斯三角形。读这本书时,他在空白处留了一小段批注,大意是:方程x2+y2=z2有无数的整数解,而任何其他此类方程

xn+yn=zn

当n是整数且大于2时,却没有任何整数解。

费马还写道:“我发现了一个绝妙的证明方法,但这里太窄写不下。”

费马死后,人们在其图书室发现了这本丢番图的书,这条批注也受到了关注。这是三百年前的事了,从那以后,各国最优秀的数学家们都试图重构费马批注时心中所想的证明,但至今仍没有结果。[4]可以肯定的是,他们朝着最终目标迈出了相当大的步伐,并且为证明费马定理创建了一个全新的数学分支,即所谓的“理想论”。欧拉证明了方程x3+y3=z3和x4+y4=z4得不出整数解,狄利克雷证明了方程x5+y5=z5得不出整数解,而通过几位数学家的联合努力,人类已经证明,当n小于269时,费马方程都不可能得出整数解。但至今尚未有一种适用于一切指数n的普遍证明,越来越多人也开始怀疑费马本人并未得出相应的证明,或者误以为自己得出了。后来,有人发布了10万德国马克的悬赏金以求证该定理,更多人开始研究这个问题,当然,所有冲着钱来的业余数学家们无一不空手而归。

当然,这个定理仍有可能是错误的,只要找到一个例子,其中两个整数的某次幂之和等于第三个整数的相同次幂即可。但这样的例子只可能存在于269次幂以上的情况,要找到它谈何容易。