参考文献
参考文献
[1] 赵恒谦,强加成,赵红蕊,等. 历代景德镇青花瓷光谱特征分析研究[J]. 光谱学与光谱分析,2019,39(03):942-947.
[2] 吴隽,李家治,郭景坤等.景德镇历代青花瓷微量元素的研究[J]. 陶瓷学报,1998,(03):134-136.
[3] 武锋强,杨武年,李丹. 基于高光谱成像与拉曼技术的艺术画颜料成分对比检测研究[J]. 矿物学报,2014,34(02):166-170.
[4] 巩梦婷,冯萍莉. 高光谱成像技术在中国画颜料分类和识别上的应用初探—— 以光谱角填图(SAM)为例[J]. 文物保护与考古科学,2014,26(04):76-83.
[5] 于庆华,陈典华. 清代青花瓷器发展探究[J]. 景德镇高专学报,2009,24(02):120-121.
[6] 吴隽,罗宏杰,李家治,等. 中国古陶瓷的断源断代[J]. 硅酸盐学报,2007,(S1):39-43.
[7] YU K N, MIAO J M. Multivariate analysis of the energy dispersive X-ray fluorescence results from blue and white Chinese porcelains[J]. Archaeometry, 1998, 40(2): 331-339.
[8] 邓文华. 浅谈数学猜想能力的培养[J]. 零陵学院学报,2005,(02):126-127.
[9] HINTON G E, SALAKHUTDINOV R R. Reducing the dimensionality of data with neural networks[J]. science, 2006, 313(5786): 504-507.
[10] 郑远攀,李广阳,李晔. 深度学习在图像识别中的应用研究综述[J]. 计算机工程与应用,2019,55(12):20-36.
[11] DENG J, DONG W, SOCHER R, et al. ImageNet: A large-scale hierarchical image database[C]// IEEE conference on computer vision and pattern recognition, 2009: 248-255.
[12] SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[J]. ArXiv preprint arXiv: 1409. 1556, 2014.
[13] HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2016: 770-778.
[14] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[J]. Communications of the ACM, 2017, 60(6): 84-90.
[15] 栗科峰,黄全振. 融合深度学习与最大间距准则的人脸识别方法[J]. 计算机工程与应用,2018,54(05):206-210. 0020
[16] WU R, KAMATA S. A jointly local structured sparse deep learning network for face recognition[C]//2016 IEEE International Conference on Image Processing(ICIP). IEEE, 2016: 3026-3030.
[17] 刘吉,孙仁诚,乔松林. 深度学习在医学图像识别中的应用研究[J]. 青岛大学学报(自然科学版),2018,31(01):69-74.
[18] MOHAMED A A, BERG W A, PENG H, et al. A deep learning method for classifying mammographic breast density categories[J]. Medical physics, 2018, 45(1): 314-321.
[19] CHENG G, YANG C, YAO X, et al. When deep learning meets metric learning: Remote sensing image scene classification via learning discriminative CNNs[J]. IEEE transactions on geoscience and remote sensing, 2018, 56(5): 2811-2821.
[20] 戴文渊. 基于实例和特征的迁移学习算法研究[D]. 上海:上海交通大学,2009.
[21] 刘名赫. 基于深度学习的交通标志检测及识别[D]. 吉林:吉林大学,2021.
[22] 张旭亚. 基于特征提取和机器学习的医学图像分析[D]. 南京:南京邮电大学,2011.
[23] 吴沛达. 基于深度学习和注意力机制的高光谱图像分类[D]. 南京:南京邮电大学,2021.
[24] 苏哲. 基于深度学习的生活垃圾图像分类方法研究[D]. 兰州:西北师范大学,2021.
[25] 吴国琴. 迁移学习在图像分类中的应用研究[D]. 合肥:安徽大学,2017.
[26] PAN S J, YANG Q. A survey on transfer learning[J]. IEEE Transactions on knowledge and data engineering, 2009, 22(10): 1345-1359.
[27] 夏坚,周利君,张伟. 基于迁移学习与VGG16深度神经网络的建筑物裂缝检测方法[J]. 福建建设科技,2022,(01):19-22.
[28] 张文博. 基于深度卷积神经网络的生活垃圾分类方法研究[D]. 西安:西京学院,2021.
[29] DAI W, YANG Q, XUE G R, et al. Boosting for transfer learning[C]// Proceedings of the 24th international conference on Machine learning. 2007: 193-200.
[30] HUANG J, GRETTON A, BORGWARDT K, et al. Correcting sample selection bias by unlabeled data[J]. Advances in neural information processing systems, 2006, 19.
[31] PENG Y, PENG L. A cooperative transmission strategy for body-area networks in healthcare systems[J]. IEEE Access, 2016, 4: 9155-9162.
[32] PAN S J, TSANG I W, KWOK J T, et al. Domain adaptation via transfer component analysis[J]. IEEE transactions on neural networks, 2010, 22(2): 199-210.
[33] CHEPLYGINA V, BRUIJINE M D, PLUIM J P W. Not-so-supervised: a survey of semi-supervised, multi-instance, and transfer learning in medical image analysis[J]. Medical image analysis, 2019, 54: 280-296.
[34] HAN D, LIU Q, FAN W. A new image classification method using CNN transfer learning and web data augmentation[J]. Expert Systems with Applications, 2018, 95: 43-56.
[35] FAN J Y, LEE J H, LEE Y K. A transfer learning architecture based on a support vector machine for histopathology image classification[J]. Applied Sciences, 2021, 11(14): 6380.
[36] HUGHES G. On the mean accuracy of statistical pattern recognizers[J]. IEEE transactions on information theory, 1968, 14(1): 55-63.
[37] LANDGREBE D A. Signal theory methods in multispectral remote sensing[M]. John Wiley & Sons, 2003.
[38] 杜培军,夏俊士,薛朝辉,等. 高光谱遥感影像分类研究进展[J]. 遥感学报,2016,20(02):236-256.
[39] 陈彬,洪家荣,王亚东. 最优特征子集选择问题[J]. 计算机学报,1997,(02):133-138.
[40] 骆仁波. 遥感图像的特征提取及其融合与分类研究[D]. 广州:华南理工大学,2017.
[41] 杨哲海,韩建峰,宫大鹏等. 高光谱遥感技术的发展与应用[J]. 海洋测绘,2003,(06):55-58.
[42] 曹宁. 基于光谱成像的寺观壁画烟熏区域信息复原[D]. 北京:北京建筑大学,2021.
[43] 闫馨方. 面向滇中典型农作物的高光谱遥感特性分析研究[D]. 昆明:昆明理工大学,2021.
[44] BAYER W, OCHS W. Quantum States with Maximum Information Entropy. I[J]. Zeitschrift für Naturforschung A, 1973, 28(5): 693-701.
[45] KENT J T. Information gain and a general measure of correlation[J]. Biometrika, 1983, 70(1): 163-173.
[46] CHAVEZ P S, BERLIN G L, SOWERS L B. Statistical method for selecting Landsat MSS ratios[J]. Journal of Applied Photographic Engineering, 1982, 8(1): 23-30.
[47] 刘春红,赵春晖,张凌雁. 一种新的高光谱遥感图像降维方法[J]. 中国图象图形学报,2005,(02):218-222.
[48] 罗音,舒宁. 基于信息量确定遥感图像主要波段的方法[J]. 城市勘测,2002,(04):28-32.
[49] ZHONG C, LI L, BU F. Study of modified band selection methods of hyperspectral image based on optimum index factor[C]//International Symposium on Optoelectronic Technology and Application 2014: Optical Remote Sensing Technology and Applications. SPIE, 2014, 9299: 246-251.
[50] LI X J, LIU J. An adaptive band selection algorithm for dimension reduction of hyperspectral images[C]//2009 International Conference on Image Analysis and Signal Processing. IEEE, 2009: 114-118.
[51] 赵英时等. 遥感应用分析原理与方法[M]. 北京:科学出版社,2003.
[52] 陈述彭等. 遥感信息机理研究[M]. 北京:科学出版社,1998.
[53] 田明璐. 西北地区冬小麦生长状况高光谱遥感监测研究[D]. 咸阳:西北农林科技大学,2017.
[54] 田庆久,闵祥军. 植被指数研究进展[J]. 地球科学进展,1998,(04):10-16.
[55] 谭昌伟,郭文善,王纪华,等. 浅析遥感光谱特征参量的原理及基本方法[J]. 遥感技术与应用,2010,25(01):155-160.
[56] LIU N, CHEN X, LI Q. Quantitative analysis of alteration mineral content and characteristic spectra of Hyperion image at oil and gas microseepage area[C]//2015 International Conference on Optical Instruments and Technology: Optoelectronic Imaging and Processing Technology. SPIE, 2015, 9622: 293-297.
[57] FRIEDMAN J H, TUKEY J W. A projection pursuit algorithm for exploratory data analysis[J]. IEEE Transactions on computers, 1974, 100(9): 881-890.
[58] LEI T C, WAN S, CHOU T Y. The comparison of PCA and discrete rough set for feature extraction of remote sensing image classification–A case study on rice classification, Taiwan[J]. Computational Geosciences, 2008, 12: 1-14.
[59] LI R F, WANG X Z. Dimension reduction of process dynamic trends using independent component analysis[J]. Computers & Chemical Engineering, 2002, 26(3): 467-473.
[60] LI C F, LIU L, LEI Y M, et al. Clustering for HSI hyperspectral image with weighted PCA and ICA[J]. Journal of Intelligent & Fuzzy Systems, 2017, 32(5): 3729-3737.
[61] CUI M, PRASAD S, LI W, et al. Locality preserving genetic algorithms for spatial-spectral hyperspectral image classification[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2013, 6(3): 1688-1697.
[62] ZHANG Y, PRASAD S. Locality preserving composite kernel feature extraction for multi-source geospatial image analysis[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2014, 8(3): 1385-1392.
[63] SHANKAR B U, MEHER S K, GHOSH A. Wavelet-fuzzy hybridization: feature-extraction and land-cover classification of remote sensing images[J]. Applied Soft Computing, 2011, 11(3): 2999-3011.
[64] SOJASI S, YOUSEFI B, LIAIGRE K, et al. The role of the continuous wavelet transform in mineral identification using hyperspectral imaging in the long-wave infrared by using SVM classifier[C]// Thermosense: Thermal Infrared Applications XXXIX. SPIE, 2017, 10214: 392-398.
[65] 叶宏明. 中国瓷器的起源[J]. 天津大学学报,1995,(04):439-449.
[66] 安金槐. 对于我国瓷器起源问题的初步探讨[J]. 考古,1978,(03):189-194.
[67] 李耀柄. 连载2 中国瓷器的时代特征—— 新石器时代的陶(一)[J]. 紫禁城,2004,(02):120-125.
[68] 李辉柄. 中国瓷器的时代特征商至汉代的陶瓷(二)[J]. 紫禁城,2004,(05):112-118.
[69] 李辉柄. 中国瓷器的时代特征三国两晋南北朝的瓷器(二)[J]. 紫禁城,2004,(06):110-116.
[70] 李辉柄. 中国瓷器的时代特征连载(七)隋唐五代时期的瓷器[J]. 紫禁城,2005,(01):166-177.
[71] 李辉柄. 中国瓷器的时代特征连载(八)两宋时期的瓷器[J]. 紫禁城,2005,(02):182-193.
[72] 李辉柄. 中国瓷器的时代特征连载(九)—— 元代的瓷器[J]. 紫禁城,2005,(04):162-171.
[73] 李辉柄. 中国瓷器的时代特征连载(十)—— 明清时代的瓷器[J]. 紫禁城,2005,(06):154-178.
[74] 陈士龙. 瓷器鉴藏全书[M]. 北京:中央编译出版社,2017.
[75] 叶宏明,劳法盛,李国桢,季来珍,叶国珍. 南宋官窑青瓷的研究[J]. 硅酸盐学报,1983,(01):19-32.
[76] 崔瑛. 非物质文化遗产视角下耀州窑制瓷工艺的保护和传承研究[D]. 西安:西安外国语大学,2011.
[77] 郑晓娜. 论青花瓷的起源及艺术特色[J]. 旅游纵览(行业版),2012,(04):52.
[78] 刘拾云. 青花瓷的起源与发展[J]. 陶瓷研究,1999,(03):47-51.
[79] 付洋. 青花色料的传承、发展与对比研究[D]. 景德镇:景德镇陶瓷大学,2021.
[80] 胡强. 元明清民国青花瓷装饰艺术的题材及鉴赏审美研究[J]. 景德镇学院学报,2017,32(04):132-135.
[81] 唐建. 中国古代瓷器鉴定实例[M]. 北京:紫禁城出版社,2009:206-210.
[82] 曹建文,周浩. 论景德镇元青花瓷器真伪鉴定[J]. 中国美术馆,2012,(08):29-33.
[83] 郭丽,胡志恒,赵恒谦,等. 基于网络爬虫的青花瓷文物图像数据集设计与构建[J]. 科技资讯,2021,19(22):15-18.
[84] 张驰,郭媛,黎明. 人工神经网络模型发展及应用综述[J]. 计算机工程与应用,2021,57(11):57-69.
[85] HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2016: 770-778.
[86] 范新磊. 安全帽智能检测算法研究[D]. 烟台:山东工商学院,2022.
[87] 陈尧成,张福康,张筱薇,等. 唐代青花瓷用钴料来源研究[J]. 中国陶瓷,1995,(02):43-47.
[88] 王健华. 明初青花瓷发展的原因及特点[J]. 故宫博物院院刊,1998,(01):75-82.
[89] ZHOU S, CHENG J L, HUANG M X, et al. Assessing reclamation levels of coastal saline lands with integrated stepwise discriminant analysis and laboratory hyperspectral data[J]. Pedosphere, 2006, 16(2): 154-160.
[90] BAEVSKY R M, CHERNIKOVA A G, FUNTOVA I I, et al. Assessment of individual adaptation to microgravity during long term space flight based on stepwise discriminant analysis of heart rate variability parameters[J]. Acta Astronautica, 2011, 69(11-12): 1148- 1152.
[91] PETALAS C, ANAGNOSTOPOULOS K. Application of stepwise discriminant analysis for the identification of salinity sources of groundwater[J]. Water resources management, 2006, 20: 681-700.
[92] 张菊连,沈明荣. 基于逐步判别分析的砂土液化预测研究[J]. 岩土力学,2010,31(S1):298-302.
[93] LI H, LIANG Y, XU Q, et al. Key wavelengths screening using competitive adaptive reweighted sampling method for multivariate calibration[J]. Analytica chimica acta, 2009, 648(1): 77-84.
[94] 许童羽,金忠煜,郭忠辉,等. 基于CARS-RUN-ELM算法的水稻叶片氮磷含量协同反演方法[J]. 农业工程学报,2022,38(10):148-155.
[95] 路皓翔,张静,李灵巧,等. 最小角回归结合竞争性自适应重加权采样的近红外光谱波长选择[J]. 光谱学与光谱分析,2021,41(06):1782-1788.
[96] 王翠秀,曹见飞,顾振飞,等. 基于近红外光谱大豆蛋白质、脂肪快速无损检测模型的优化构建[J]. 大豆科学,2019,38(06):968-976.
[97] 田捷等. 集成化医学影像算法平台理论与实践[M]. 北京:清华大学出版社,2004.
[98] 陈武凡. 小波分析及其在图像处理中的应用[M]. 北京:科学出版社,2002.
[99] VOHLAND M, LUDWIG M, HARBICH M, et al. Using variable selection and wavelets to exploit the full potential of visible–near infrared spectra for predicting soil properties[J]. Journal of Near Infrared Spectroscopy, 2016, 24(3): 255-269.
[100] WANG G, FANG Q, TENG Y, et al. Determination of the factors governing soil erodibility using hyperspectral visible and near-infrared reflectance spectroscopy[J]. International journal of applied earth observation and geoinformation, 2016, 53: 48-63.
[101] 于雷,洪永胜,周勇,等. 连续小波变换高光谱数据的土壤有机质含量反演模型构建[J]. 光谱学与光谱分析,2016,36(05):1428-1433.
[102] 周唯. 眼底图像目标检测与智能分析诊断方法研究[D]. 沈阳:东北大学,2018.
[103] 周唯,吴成东. 视网膜图像中的黄斑中心检测[J]. 中国图象图形学报,2018,23(03):442-449.
[104] CUTLER A, CUTLER D R, Stevens J R. Random forests[J]. Ensemble machine learning: Methods and applications, 2012: 157-175.
[105] 王晓青. X集团现金流精细化管理研究[D]. 上海:上海交通大学,2016.
[106] 纪宇楠. 基于随机森林构建滤泡型甲状腺癌远处转移预测模型[D]. 沈阳:中国医科大学,2018.
[107] HOCHREITER S, SCHMIDHUBER J. Long short-term memory[J]. Neural computation, 1997, 9(8): 1735-1780.
[108] 程亚红,郑鹏,刘栋梁,等. 基于LSTM网络的在线圆度预测[J]. 组合机床与自动化加工技术,2022,(10):37-39.
[109] 孟雪. 基于股票评论的投资者情绪对股票收益率影响研究[D]. 曲阜:曲阜师范大学,2021.
[110] 彭玉凤. 基于高光谱成像技术的苹果树叶片褐斑病严重度诊断模型[D]. 泰安:山东农业大学,2021.
[111] SAVITZKY A, GOLAY M J E. Smoothing and differentiation of data by simplified least squares procedures[J]. Analytical chemistry, 1964, 36(8): 1627-1639.
[112] 王力. 基于DS证据理论的多传感器数据融合算法研究与应用[D]. 太原:太原理工大学,2015.
[113] 王耀南,李树涛. 多传感器信息融合及其应用综述[J]. 控制与决策,2001,(05):518-522.
[114] 赵恒谦,李坤恒,郭丽,等. 基于便携式地物光谱仪的常见宝玉石材质反射率光谱特征分析[J]. 矿物岩石,2021,41(02):1-12.