参考文献
参考文献
[1]中国互联网络发展状况统计报告[EB/OL].http://www.cac.gov.cn/2018-01/31/c_1122347026.htm.
[2]我国信息安全行业发展趋势分析[EB/OL].http://www.esafety.org.cn/images/aqal1.html.
[3]习近平:把我国从网络大国建设成为网络强国[EB/OL].http://www.cac.gov.cn/2014-04/24/c_126430399.htm.
[4]国家网络空间安全战略[EB/OL].http://www.cac.gov.cn/2016-12/27/c_1120195926.htm.
[5]任维武,张波辰,底晓强,等.基于人工蜂群优化的密度聚类异常入侵检测算法[J].吉林大学学报(理学版),2018,v.56;No.229(01):101-106.
[6]徐杨,袁峰,林琪,等.基于混合人工免疫算法的流程挖掘事件日志融合方法[J].软件学报,2018,29(2):396-416.
[7]邱卫,杨英杰,汪永伟,等.基于改进遗传算法和隐Markov模型的协议异常检测方法[J].计算机应用研究,2016,v.33;No.294(04):210-214.
[8]屈洪春,王帅.一种基于进化神经网络的混合入侵检测模型[J].计算机科学,2016,043(0z1):335-338.
[9]贾凡,孔令智.基于卷积神经网络的入侵检测算法[J].北京理工大学学报,2017,37(12):1271-1275.
[10]徐甫.基于可信根的计算机终端免疫模型[J].电子学报,2016,44(3):653-657.
[11]程春玲,柴倩,徐小龙,等.一种用于病毒检测的协作免疫网络算法[J].电子学报,2013(12):200-204.
[12]李琳,尚文利,姚俊,等.单类支持向量机在工业控制系统入侵检测中的应用研究综述[J].计算机应用研究,2016(1):7-11.
[13]张燕燕.现代免疫学概论[M].北京:科学出版社,2017.
[14]左伋,刘艳平.细胞生物学[M].北京:人民卫生出版社,2015.
[15]李春艳.免疫学基础[M].北京:科学出版社,2012.
[16]于爱莲,王月丹.病原生物与免疫学[M].北京:北京大学医学出版社,2015.
[17]刘若辰,钮满春,焦李成.一种新的人工免疫网络算法及其在复杂数据分类中的应用[J].电子与信息学报,2010(3):11-17.
[18]袁明新,叶兆莉,程帅,等.干扰素调节的多机器人协作搬运免疫网络算法[J].智能系统学报,2014(1):76-82.
[19]行小帅,潘进,焦李成.基于免疫规划的K-means聚类算法[J].计算机学报,2003(5):94-99.
[20]高旭,桂志鹏,隆玺,等.KDSG-DBSCAN:一种基于K-D Tree和Spark GraphX的高性能DBSCAN算法[J].地理与地理信息科学,2017,33(6):1-7.
[21]江海峰,庄健,刘竹林.概率论与数理统计[M].合肥:中国科学技术大学出版社,2013.
[22]罗斯.应用随机过程:概率模型导论[M].北京:人民邮电出版社,2011.
[23]王秀磊,陈鸣,邢长友,等.一种防御DDoS攻击的软件定义安全网络机制[J].软件学报,2016,27(12):3104-3119.
[24]肖人彬,王磊.人工免疫系统:原理、模型、分析及展望[J].计算机学报,2002,25(12):1281-1293.
[25]莫宏伟,左兴权.人工免疫系统[M],北京:科学出版社,2009.
[26]周椿入,刘晓明,雷敏,等.Web服务器应用层慢速DDoS攻击防御研究[J].北京邮电大学学报,2017,40:77-80.
[27]Li T.Dynamic detection for computer virus based on immune system[J].中国科学:f辑英文版,2008,51(10):1475-1486.
[28]YingT,PengtaoZ.Immunebasedcomputervirusdetection approaches[J].智能系统学报,2013,8(1):80-94.
[29]Qiao R,Seaborn M.A New Approach for Rowhammer Attacks[C]//Host.IEEE,2016..
[30]Bosman E,Razavi K,Bos H,et al.Dedup Est Machina:Memory Deduplication as an Advanced Exploitation Vector[C]//Proc.of the 37th IEEE Symposium on Security and Privacy.IEEE,2016..
[31]Apostolos F,Lidia P F,Odysseas K.Exploiting Hardware Vulnerabilities to Attack Embedded System Devices:a Survey of Potent Microarchitectural Attacks[J].Electronics,2017,6(3):52.
[32]Hector Gomez,AndresAmaya,Elkim Roa.DRAM row-hammer attack reduction using dummy cells[C]//Nordic Circuits&Systems Conference.IEEE,2016.
[33]Aweke Z B,Yitbarek S F,Qiao R,et al.ANVIL:Software-Based Protection Against Next-Generation Rowhammer Attacks[J].ACM SIGOPS Operating Systems Review,2016,50(2):743-755.
[34]Wen H J,Tarn,Jyh-Horng Michael.Internet security:a case study of firewall selection[J].Information Management&Computer Security,1998,6(4):178-184.
[35]Elmallah E S,Gouda M G.Hardness of Firewall Analysis[J].IEEE Transactions on Dependable&Secure Computing,2017,14(3):339-349.
[36]Choi,Mi-Jung,Hong,et al.A secure web-based global management system for firewall/VPN devices[J].Communications&Networks Journal of,2002,4(1):71-78.
[37]Er.Narender Kumar Naryal,Er.Satinderjit Kaur Gill.Security Issues in the Firewall Authentication caused by the Wireshark-A Protocol Analyzer Tool[J].international journal of computer science&mobile computing,2014,3(8):18-23.
[38]Richards K.Network based intrusion detection:A review of technolo-gies[J].Computers&Security,1999,18(8):671-682.
[39]RebeccaBace.Intrusion Detection[J].Computerworld,1999,3(1):1-29.
[40]Shabtai A,Kanonov U,Elovici Y,et al.“Andromaly”:a behavioral malware detection framework for android devices[J].journal of intelligent information systems,2012,38(1):161-190.
[41]Ahmed M,Mahmood A N,Hu J.A Survey of Network Anomaly Detection Techniques[J].Journal of Network and Computer Applications,2015,60:19-31.
[42]Balasaraswathi V R,Sugumaran M,Hamid Y.Feature selection techniques for intrusion detection using non-bio-inspired and bio-inspired optimization algorithms[J].Journal of Communications&Information Networks,2017,2(4):107-119.
[43]Kim G,Lee S,Kim S.A novel hybrid intrusion detection method integrating anomaly detection with misuse detection[J].Expert Systems with Application,2014,41(4pt.2):1690-1700.
[44]Moon D,Pan S B,Kim I.Host-based intrusion detection system for secure human-centric computing[J].Journal of Supercomputing,2016,72(7):2520-2536.
[45]ByungRae Cha.Host anomaly detection performance analysis based on system call of NeuroFuzzy using Soundex algorithm and N-gram technique[C]//SystemsCommunications,2005.Proceedings.IEEEComputer Society,2005.
[46]Wonghirunsombat E,Asawaniwed T,Hanchana V,et al.A centralized management framework of network-based Intrusion Detection and Prevention System[C]//Computer Science and Software Engineering(JCSSE),2013 10th International Joint Conference on.IEEE,2013.
[47]Singh A P,Singh M D.Analysis of Host-Based and Network-Based Intrusion Detection System[J].international journal of computer network&information security,2014,6(8):41-47.
[48]Kshirsagar D,Sawant S,Wadje R,et al.Distributed Intrusion Detection System for TCP Flood Attack[M].Proceeding of International Conference on Intelligent Communication,Control and Devices.Springer Singapore,2017.
[49]Mehmood Y,Shibli M A,Kanwal A,et al.Distributed intrusion detection system using mobile agents in cloud computing environment[C]//2015 Conference on Information Assurance and Cyber Security(CIACS).IEEE,2015.
[50]Wang M,Li Z,Lin Y.A Distributed Intrusion Detection System for Cognitive Radio Networks Based on Evidence Theory[C]//2017 IEEE International Conference on Software Quality,Reliability and Security Companion(QRSC).IEEE,2017.
[51]Yong H,Feng Z X.Expert System Based Intrusion Detection System[C]//International Conference on Information Management,Innovation Management&Industrial Engineering.IEEE,2010.
[52]Yost J R.The March of IDES:Early History of Intrusion-Detection Expert Systems[J].IEEE annals of the history of computing,2016,38(4):42-54.
[53]Ye N,Emran S M,Chen Q,et al.Multivariate Statistical Analysis of Audit Trails for Host-Based Intrusion Detection[J].IEEE Transactions on Computers,2002,51(7):810-820.
[54]Ho C Y,Wang F Y,University N C T,et al.Statistical Analysis of False Positives and False Negatives from Real Traffic with Intrusion Detection/Prevention Systems[J].ieee communications magazine,2012,50(3):146-154.
[55]Verma,Abhishek,Ranga,Virender.Statistical analysis of CIDDS-001 dataset for Network Intrusion Detection Systems using Distance-based Machine Learning[J].Procedia Computer Science,2018,125:709-716.
[56]Zhang B C,Hu G Y,Zhou Z J,et al.Network Intrusion Detection Based on Directed Acyclic Graph and Belief Rule Base[J].Etri Journal,2017,39(4):592-604.
[57]Turner C,Jeremiah R,Richards D,et al.A Rule Status Monitoring Algorithm for Rule-Based Intrusion Detection and Prevention Systems[J],Pro-cedia Computer Science,2016,95:361-368.
[58]Zheng J.“Soft-Man”and Data Mining based Distributed Intrusion Detection System[J].International Journal of Security&Its Applications,2016,10(8):145-150.
[59]Kaur,Ravneet,Singh,Sarbjeet.A survey of data mining and social network analysis based anomaly detection techniques[J].egyptian informatics journal,2016,17(2):199-216.
[60]Peng K,Leung V C M,Huang Q.Clustering Approach Based on Mini Batch Kmeans for Intrusion Detection System over Big Data[J].IEEE Access,2018(99):1-1.
[61]Jain C,Saxena A K.General Study of Mobile Agent Based Intrusion Detection System(IDS)[J].Journal of Computer and Communications,2016,4(4):93-98.
[62]Shah B,Trivedi B H.Improving Performance of Mobile Agent Based Intrusion Detection System[C]//Fifth International Conference on Advanced Computing&Communication Technologies.IEEE,2015.
[63]Dash,Tirtharaj.A study on intrusion detection using neural networks trained with evolutionary algorithms[J].Soft Computing,2017,21(10):2687-2700.
[64]Hu L,Zhang Z,Tang H,et al.An improved intrusion detection framework based on Artificial Neural Networks[C]//International Conference on Natural Computation.IEEE,2015.
[65]ForrestS,Perelson A S,Allen L,et al.Self-nonselfdiscrimination in a computer[C].Proceedings of the1994 IEEE Symposium on Research in Securiiy andPrivacy,LosAlamitos,CAIEEEComputerSocietyPress,1994:202-212.
[66]Zitar R A,Hamdan A.Genetic optimized artificial immune system in spam detection:a review and a model[J].Artificial Intelligence Review,2013,40(3):305-377.
[67]Wu H.Artificial immune systems based intrusion detection algorithm for cloud environment[J].Boletin Tecnico/Technical Bulletin,2017,55(1):11-17.
[68]Hu X,Liu X,Li T,et al.Dynamically real-time intrusion detection algorithm with immune network[J].Journal of Computational Information Systems,2015,11(2):587-594.
[69]Hofmeyr S A.An Immunological Model of Distributed Detection and Its Application to Computer Security[D].Department of Computer Sciences,University of New Mexico,1999.
[70]Wu J,Peng D,Li Z,et al.Network Intrusion Detection Based on a General Regression Neural Network Optimized by an Improved Artificial Immune Algorithm[J].Plos One,2015,10(3):e0120976.
[71]Al-Yaseen W L,Othman Z A,Nazri M Z A.Multi-level hybrid support vector machine and extreme learning machine based on modified K-means for intrusion detection system[J].Expert Systems with Applications,2017,67:296-303.
[72]Aparicio-Navarro F J,Kyriakopoulos K G,Gong Y,et al.Using Pattern-of-Life as Contextual Information for Anomaly-Based Intrusion Detection Systems[J].IEEE Access,2017,5:22177-22193.
[73]Alkasassbeh M.An empirical evaluation for the intrusion detection features based on machine learning and feature selection methods[J].journal of theoretical&applied information technology,2017,95(22):5962-5976.
[74]Dong R H,Wu D F,Zhang Q Y,et al.Mutual Information-based Intrusion Detection Model for Industrial Internet[J].International Journal of Network Security,2018,20(1):131-140.
[75]Varma P R K,Kumari V V,Kumar S S.Feature Selection Using Relative Fuzzy Entropy and Ant Colony Optimization Applied to Real-time Intrusion Detection System[J].Procedia Computer Science,2016,85:503-510.
[76]Tavallaee M,Stakhanova N,Ghorbani A A.Toward Credible Evaluation of Anomaly-Based Intrusion-Detection Methods[J].IEEE Transactions on Systems Man&Cybernetics Part C,2010,40(5):516-524.
[77]Waqas H,Gideon C,Yi X,et al.Windows Based Data Sets for E-valuation of Robustness of Host Based Intrusion Detection Systems(IDS)to Zero-Day and Stealth Attacks[J].Future Internet,2016,8(3):29.
[78]Yang Y,Xu H Q,Gao L,et al.Multidimensional Intrusion Detection System for IEC 61850-Based SCADA Networks[J].IEEE Transactions on Power Delivery,2017,32(2):1068-1078.
[79]Lin,Qiuzhen,Chen,Jianyong,Zhan,ZhiHui,et al.A Hybrid Evolutionary Immune Algorithm for Multiobjective Optimization Problems.[J].IEEE transactions on evolutionary computation,2016,20(5):711-729.
[80]Samigulina G A,Samigulina Z I.Modified immune network algorithm based on the Random Forest approach for the complex objects control[J].Artificial Intelligence Review,2018(1):1-17.
[81]Lin Q,Ma Y,Chen J,et al.An adaptive immune-inspired multiobjective algorithm with multiple differential evolution strategies[J].Information Sciences,2018,430-431:46-64.
[82]Lizondo D,Rodriguez S,Will,Adrián,et al.An Artificial Immune Network for Distributed Demand-Side Management in Smart Grids[J].Information Sciences,2018,438:32-45.
[83]Lin C Y,Roberts G W,Kift-Morgan A,et al.Pathogen-Specific Local Immune Fingerprints Diagnose Bacterial Infection in Peritoneal Dialysis Patients[J].Journal of the American Society of Nephrology,2013,24(12):2002-2009.
[84]Hofmeyr S A,Forrest S.Architecture for an Artificial Immune System[J].Evolutionary Computation,2000,8(4):443-473.
[85]Turk,J L.A History of Immunology[M].Elsevier/Academic Press,2009.
[86]Reimold A M,Iwakoshi N N,Manis J,et al.Plasma cell differentiation requires the transcription factor XBP-1[J].Nature,2001,412(6844):300-307.
[87]Crouse J,Bedenikovic G,Wiesel M,et al.Type I Interferons Pro-tect T Cells against NK Cell Attack Mediated by the Activating Receptor NCR1[J].Immunity,2014,40(6):961-973.
[88]Li J.Medical Immunology[J].Journal of the American Medical Association,2007,298(14):1699-1704.
[89]Litman G W,Rast J P,Shamblott M J,et al.Phylogenetic diversification of immunoglobulin genes and the antibody repertoire[J].Mol.Biol.Evol.1993-01,10(1):60-72.
[90]Bita Sahaf,Dmitry Tebaykin,Melissa Hopper,et al.Ibrutinib-Mediated Inhibition of cGVHD Pathogenic Pre-Germinal Center B-Cells and Follicular Helper Cells While Preserving Immune Memory and Th1 T-Cells[J].Biology of Blood&Marrow Transplantation,2018,24(3):S20-S21.
[91]Perelson A S,Immune Network Theory[J].Immunological Reviews,1989,110:5-36.
[92]Morita C T,Jin C,Sarikonda G,et al.Nonpeptide antigens,presentation mechanisms,and immunological memory of human Vγ2Vδ2 T cells:discriminating friend from foe through the recognition of prenyl pyrophosphate antigens[J].Immunological Reviews,2007,215(1):59-76.
[93]Alizadeh E,Meskin N,Khorasani K.A Negative Selection Immune System Inspired Methodology for Fault Diagnosis of Wind Turbines[J].IEEE Transactions on Cybernetics,2016:1-15.
[94]Kuo R J,Chang J W.Intelligent RFID positioning system through immune-based feed-forward neural network[J].Journal of Intelligent Manufacturing,2013,26(4):755-767.
[95]Jerne N K.Idiotypic networks and other preconceived ideas[J].Immunological Reviews,1984,79(1):5-24.
[96]Stantchev V,Prieto-Gonzalez L,Tamm G.Cloud computing service for knowledge assessment and studies recommendation in crowdsourcing and collaborative learning environments based on social network analysis[J].Computers in Human Behavior,2015,51PB(OCT.):762-770.
[97]Yuan M X,Zhang PP,Li H Y,et al.A New Artificial Immune Net-work Model for Mobile Robot Path Planning[J].Applied Mechanics&Materials,2013,416-417:757-761.
[98]Geoffrey,W,Hoffmann.A neural network model based on the analogy with the immune system[J].Journal of Theoretical Biology,1986,122(1):33-67.
[99]Chen B,Zang C Z.Emergent damage pattern recognition using immune network theory[J].Smart Structures&Systems,2011,8(8):413-424.
[100]Ishiguro A,Kuboshiki S,Ichikawa S,et al.Gait control of hexapod walking robots using mutual-coupled immune networks[J].Advanced Robotics,1995,10(2):179-195.
[101]Chowdhury D,Chakrabarti B K.Robustness of the network models of immune response[J].Physica A Statistical Mechanics&Its Applications,1990,167(3):635-640.
[102]Doku,Isamu.On a Random Model for Immune Response:Toward a Modeling of Antitumor Immune Responses(Theory of Biomathematics and its Applications VII)[J].physical review d particles&fields,2005,71(3):034012-034012.
[103]KimJ,Bentley P J.Towards an artificial immune system for network intrusion detection:an investigation of clonal selection with a negative selection operator[C]//Congress on Evolutionary Computation,2001,30(6):1244-1252.
[104]Behzad S,Fotohi R,Balov J H,et al.An Artificial Immune Based Approach for Detection and Isolation Misbehavior Attacks in Wireless Networks[J].Journal of Computers,2018,13(6):705-720.
[105]Hashemipour M S,Soleimani S A.Artificial immune system based on adaptive clonal selection for feature selection and parameters optimisation of support vector machines[J].Connection ence,2016,28(1):47-62.
[106]Bagga P,Hans R,Sharma V.A Biological Immune System(BIS)inspired Mobile Agent Platform(MAP)security architecture[J].Expert Systems with Applications,2017,72:269-282.
[107]Leandro N De,FERNANDO J.VON ZUBEN.Immune and neural network models:Theoretical and empirical comparisons[J].International Journal of Computational Intelligence and Applications,2001,1(3):239-257.
[108]AJ Hussain,D Al-Jumeily,H Al-Askar.N Radi,Regularized dynamic self-organized neural network inspired by the immune algorithm for financial time series prediction[J].Neurocomputing,2016,188:23-30.
[109]Jamali S,Fotohi R.DAWA:Defending against wormhole attack in MANETs by using fuzzy logic and artificial immune system[J].Journal of Supercomputing,2017(1):1-24.
[110]Shang R,Tian P,Jiao L,et al.A Spatial Fuzzy Clustering Algorithm With Kernel Metric Based on Immune Clone for SAR Image Segmentation[J].IEEE Journal of Selected Topics in Applied Earth Observations&Remote Sensing,2016,9(4):1640-1652.
[111]Presbitero A,Krzhizhanovskaya V,Mancini E,et al.Immune System Model Calibration by Genetic Algorithm[J].Procedia Computer Science,2016,101:161-171.
[112]John K.Inman.Multispecificity of the antibody combining region and antibody diversity[J].immune system,1974:37-52.
[113]Osmond D G.The turn-over of B-cell populations[J].Immunology Today,1993,14(1),34-37.
[114]Schwarz A,Balint B,Korporal-Kuhnke M,et al.B-cell populations discriminate between pediatric-and adult-onset multiple sclerosis[J].Neurology Neuroimmunology Neuroinflammation,2017,4(1):e309.
[115]Borowik B,Borowik B,Kucwaj J,et al.Associative memory in artificial immune systems[J].annales umcs informatica,2010,10(2):111-122.
[116]Farber D L,Netea M G,Radbruch A,et al.Immunological memory:lessons from the past and a look to the future[J].Nature Reviews Immunology,2016,16(2):124-128.
[117]Staniford-Chen,S.The Common Intrusion Detection Framework(cdif)[C]//Position Paper of Information Survivability Workshop,1998.
[118]Wu L Y,Li S L,Gan X S,et al.Network anomaly intrusion de-tection CVM model based on PLS feature extraction[J].Kongzhi yu Juece/Control and Decision,2017,32(4):755-758.
[119]Wang L,Tang N,Gao X,et al.Understanding the immune system architecture and transcriptome responses to southern rice black-streaked dwarf virus in Sogatella furcifera[J].Scientific Reports,2016,6:36254.
[120]Golovko V,Komar M,Sachenko A.Principles of neural network artificial immunesystemdesigntodetectattacksoncomputers[C]//International Conference on Modern Problems of Radio Engineering,Telecommunications&Computer Science.IEEE,2010.
[121]Harmer P K,Williams P D,Gunsch G H,et al.Artificial immune system architecture for computer security applications[J].IEEE Transactions on Evolutionary Computation,2002,6(3):252-280.
[122]Stepney S,Smith R E,Timmis J,et al.Towards a Conceptual Framework for Artificial Immune Systems[J].Lecture Notes in Computer Science,2016,3239:53-64.
[123]Lu T L,Zheng K F,LiuY Q et al.Virus detection model based on dynamic clonal selection algorithm[J].Journal of Beijing University of Posts&Telecommunications,2013,36(3):39-43.
[124]Kalbhor M,Shrivastava S,Ujjainiya B.An artificial immune system with local feature selection classifier for spam filtering[C]//2013 Fourth International Conference on Computing,Communications and Networking Technologies(ICCCNT).IEEE,2013.
[125]Richard W.T.Pomfret.Associative Memory in an Immune-Based System.[C]//Twelfth Aaai National Conference on Artificial Intelligence.AAAI Press,1994.
[126]Cordeiro C A,Vieira E L M,Castro V M,et al.T cell immunoregulation in active ocular toxoplasmosis[J].Immunology Letters,2017,184:84-91.
[127]Zainal K,Jali M Z.A Perception Model of Spam Risk Assessment Inspired by Danger Theory of Artificial Immune Systems[C]//Elsevier B.V.2015:152-161.
[128]Anandkumar A,Devaraj H.Tumour Immunomodulation:Mucins in Resistance to Initiation and Maturation of Immune Response Against Tumours[J].Scandinavian Journal of Immunology,2013,78(1):1-7.
[129]Ou C M.An artificial immune-memory model based on idiotypic immune networks:Perspectives on antibody dynamics[J].Applied Mathematical Modelling,2016,40(23-24):10210-10221.
[130]Callard R,Yates A.Cell death and the maintenance of immunological memory[J].Discrete&Continuous Dynamical Systems,2001,1(1):43-59.
[131]Das S,Gui M,Pahwa A.Artificial Immune Systems for Self-Nonself Discrimination:Application to Anomaly Detection[M].Advances of Computational Intelligence in Industrial Systems.1970.
[132]Chen M H,Chang P C,Wu J L.A population-based incremental learning approach with artificial immune system for network intrusion detection[J].Engineering Applications of Artificial Intelligence,2016,51:171-181.
[133]Ye N,Li X,Chen Q,et al.Probabilistic techniques for intrusion detection based on computer audit data[J].IEEE Transactions on Systems Man&Cybernetics Part A,2001,31(4):0-274.
[134]Lippmann R,Haines J W,Fried D J,et al.The 1999 DARPA off-line intrusion detection evaluation[J].Computer Networks,2000,34(4):579-595.
[135]Kamarudin M H,Maple C,Watson T.Hybrid feature selection technique for intrusion detection system[J].International Journal of High Performance Computing and Networking,2019,13(2):232.
[136]Zuech R,Khoshgoftaar T M,Wald R.Intrusion detection and Big Heterogeneous Data:a Survey[J].Journal of Big Data,2015,2(1):3.
[137]Louvieris P,Clewley N,Liu X.Effects-based feature identification for network intrusion detection[J].Neurocomputing,2013,121(dec.9):265-273.
[138]Banerjee U,Arya K V.Optimizing Operating Cost of an Intrusion Detection System[J].Intl J of Communications Network&System Sciences,2013,6(1):29-36.
[139]Yuan S,Liu P,Zhao E.Research on Security Protection of the CommunicationNetworkforSpaceTT&CBasedonTCP/IPProtocol Vulnerabilities[C]//Conference of Spacecraft Tt&c Technology in China,.Springer,Singapore,2016.
[140]Nalavade K.Denial of Service on TCP/IP Security Protocols:Vulnerabilities,Tools and Countermeasures[J].International Journal of Data&Network Security,2014,4(1).
[141]Aburomman A A,Reaz M B I.Ensemble of binary SVM classifiers based on PCA and LDA feature extraction for intrusion detection[C]//2016 IEEE Advanced Information Management,Communicates,Electronic and Automation Control Conference(IMCEC).IEEE,2016.
[142]Jongsuebsuk P,Wattanapongsakorn N,Charnsripinyo C.Real-time intrusion detection with fuzzy genetic algorithm[C]//International Conference on Electrical Engineering/electronics,Computer,Telecommunications&Information Technology.IEEE,2013.
[143]Dimitrov V,Korotkich V.Fuzzy Logic:A Framework for the New Millennium[J].Studies in Fuzziness and Soft Computing,2002,81.
[144]Liu,Zhijun,Pu,et al.The analysis of application of data mining technology in the system of intrusion detection[J].International Journal of Technology Management,2014(6):4-5.
[145]Ding Y,Fu X.Kernel-based fuzzy c-means clustering algorithm based on genetic algorithm[J].Neurocomputing,2016,188(5):233-238.
[146]Iswardani A,Riadi I.Denial of Service Log Analysis Using Density K-Means Method[J].Journal of Theoretical&Applied Information Technology,2016,2083(2):299-302.
[147]Sathiya G,Kavitha P.An efficient enhanced k-means approach with improved initial cluster centers[J].Middle East Journal of Scientific Research,2014,20(4):485-491.
[148]Chen X,Liu W,Qiu H,et al.APSCAN:A parameter free algorithm for clustering[J].Pattern Recognition Letters,2011,32(7):973-986.
[149]Wu C,Gu Y,Yu G.DPSCAN:Structural Graph Clustering Based on Density Peaks[M].Database Systems for Advanced Applications.Springer,Cham,2019.
[150]Zhang W,He H,Cao B.Identifying and evaluating the internet opinion leader community based on k-clique clustering[J].Neural Computing and Applications,2013,25(3-4):595-602.
[151]Chaudhary A,Tiwari V N,Kumar A.A New Intrusion Detection System Based on Soft Computing Techniques Using Neuro-Fuzzy Classifier for Packet Dropping Attack in MANETs[J].International Journal of Network Security,2016,18(3):514-522.
[152]Miyakawa M.Analysis of Incomplete Data in Competing Risks Model[J].IEEE Transactions on Reliability,1984,R-34(4):293-296.
[153]Khan I,Huang J Z,Ivanov K.Incremental density-based ensemble clustering over evolving data streams[J].Neurocomputing,2016,191:34-43.
[154]Rani M S,Sumathy S.Analysis of KNN,C5.0 and one class svm for intrusion detection system[J].International Journal of Pharmacy and Technology,2016,8(4):26251-26259.
[155]Liu Y,Wan M,Zhang S,et al.Research of the Network Information Monitoring System Based on P2DR Model[C]//Second International Conference on Computer Modeling&Simulation.IEEE Computer Society,2010.
[156]Beg A H,Islam M Z.Novel crossover and mutation operation in genetic algorithm for clustering[C]//IEEE Congress on Evolutionary Computation.IEEE,2016.
[157]Qiu X,Xu J X,Tan K C,et al.Adaptive Cross-Generation Differential Evolution Operators for Multiobjective Optimization[J].IEEE transactions on evolutionary computation,2016,20(2):232-244.
[158]Somani G,Gaur M S,Sanghi D,et al.DDoS attacks in cloud computing[J].Computer Communications,2017,107(C):30-48.
[159]Suresh S,Sankar Ram N.Feasible DDoS attack source traceback scheme by deterministic multiple packet marking mechanism[J].Journal of Su-percomputing,2018:1-15.
[160]Genge B,Enachescu C.ShoVAT:Shodan-based vulnerability assessment tool for Internet-facing services[J].Security&Communication Networks,2016,9(15):2696-2714.
[161]MacV ek N,Milosavljevic′M.Reducing U2R and R2L Category False Negative Rates with Support Vector Machines[J].Serbian Journal of Electrical Engineering,2014,11(1):175-188.
[162]SalemD.Cost-Sensitive Access Control for Detecting Remote to Local(R2L)and User to Root(U2R)Attacks[J].International Journal of Emerging Trends&Technology in Computer Science,2017,43(2):124-129.
[163]Liu J,Yu J,Shen S.Energy-efficient two-layer cooperative defense scheme to secure Sensor-Clouds[J].IEEE Transactions on Information Forensics&Security,2017:1-1.
[164]DeepakKumar,NikhilKumar.AnApproachforCollaborative Decision in Distributed Intrusion Detection System[J].International Journal of Computer Applications,2016(133):8-14.
[165]Yang B.The data clustering based dynamic risk identification of biological immune system:mechanism,method and simulation[J].Cluster Computing,2018(7330):1-14.
[166]Banerjee S.An Immune System Inspired Theory for Crime and Violence in Cities[J].Interdisciplinary Description of Complex Systems,2017,15(1):133-143.
[167]Zheng D,Li F,Zhao T.Self-adaptive statistical process control for anomaly detection in time series[J].Expert Systems with Application,2016,57(9):324-336.
[168]Mahbod Tavallaee,Ebrahim Bagheri,Wei Lu,et al.A detailed analysis of the KDD CUP 99 data set[C]//IEEE International Conference on Computational Intelligence for Security&Defense Applications.IEEE,2009.
[169]Yoon S,Choo H L,et al.Behavior-Based Detection for Malicious Script-Based Attack[C]//International Conference on Computer Science&Its Applications.Springer Singapore,2016.
[170]Gupta S,Gupta B B.Cross-Site Scripting(XSS)attacks and defense mechanisms:classification and state-of-the-art[J].International Journal of System Assurance Engineering&Management,2017:1-19.
[171]Lecun Y,Bengio Y,Hinton G.Deep learning[J].Nature,2015,521(7553):436.
[172]Garea A S,Heras D B,Argüello F.Caffe CNN-based classification of hyperspectral images on GPU[J].Journal of Supercomputing,2018(3):1-13.