2.3.3 微纳卫星
微小卫星高功能密度计算机系统采用分层模块化、开放式体系架构,硬件模块按照航天器设备的接口类型设置,软硬件接口采用标准化设计,功能由软件定义,将卫星平台功能集成于微小计算机系统和软件中,外加载荷系统,可以满足快速组装、测试和发射等要求。遇到紧急事件时可形成数十颗甚至几十颗卫星,在较短时间内形成战斗力,对局部作战、自然灾害等应急事件提供专用支持,弥补大卫星平台的实效性不足,实现对应急突发事件的战术性快速响应。
近年来,随着商业航天的发展,利用MEMS(micro-electro-mechanical system)、工业级器件生产的微纳卫星在航天系统中所占的比重越来越大。低成本、短研制及生产周期是微纳卫星特别是商业微纳卫星的两项重要要求,也是目前微纳卫星的研制趋势。对于微纳卫星,目前主要的设计模式仍遵循传统大型卫星设计方式,采用现有卫星平台设备及单机,根据功能需要增加载荷,并在现有卫星平台基础上修改。这种模式可利用现有技术和设备产品,缩短卫星研制时间周期,但其功能及性能受限于现有产品,性能通常较低,功耗较大,难以适应微纳卫星越来越高的性能及功耗需求。虽然微纳卫星通常工作在低地球轨道,空间环境相对高轨道卫星较好,但对于星载嵌入式计算机来说,由于其承担了卫星星上平台设备及载荷控制、遥控遥测控制处理、姿态及轨道计算等关键任务,仍需要较高的可靠性。
目前在研的商业航天星载嵌入式计算机主要以高可靠性航天级处理器为主,配合工业级外围器件实现,利用处理器本身的高可靠性及外围电路冗余设计实现星载嵌入式计算机高可靠性要求。由于高可靠性处理器自身及外围电路模块限制,此种方式需要的星载嵌入式计算机的体积及重量大,功耗较高,难以满足微纳卫星小型化、集成化的要求。
系统功能包括遥测遥控管理、姿态和轨道控制、热控管理、电源管理、FDIR、配电和火工品管理、有效载荷数据处理等。
星载嵌入式计算机的核心设备采用双机冷备方式,其组成包含处理器、RS-422串口、模拟量输出、OC门指令输出、模拟电压检测接口、温度检测接口、DS检测接口、PCM接口和数字开关量输入等。