大数据精准扶贫仍面临发展瓶颈
首先,精准扶贫大数据还不够准确。精准扶贫数据,是实现精准识别、精准帮扶的基础,但当前系统误差标准不一、扶贫系统过多、功能不完善、数据量少、采集方式原始等,是影响精准扶贫大数据不够准确的主要因素。一方面,各地各部门信息化建设程度不同,数据存储管理方式不同、更新周期不一,技术力量及硬件设施等方面保障力度存在巨大差异。另一方面,平台功能不完善,导致精准扶贫识别准确率不高。例如,扶贫云系统使用率不高,数据采集渠道较窄,特别是脱贫攻坚相关数据收集不足,系统云缺乏更多、更广泛的数据源提供。产业扶贫相关数据采集度低,全面实施扶贫大数据分析存在困难。此外,信息采集方式原始导致数据不精准。当前,系统的基础信息采集工作,主要依赖帮扶干部、村支两委及驻村工作队入户采集,填写纸质资料,数据采集受人为不确定性因素影响多,扶贫数据很难达到精准。
其次,缺乏有效的扶贫数据共享开放机制。扶贫数据之间的共享,是精准比对和精准识别的关键,但目前缺乏数据交互及共享机制。例如,国务院扶贫办“全国扶贫开发信息系统”、省级扶贫办“扶贫云”系统和各个地(市州)自行开发的扶贫系统在业务架构、承建商等方面各不相同,逻辑关系复杂,数据共享存在较大困难,部分数据还需重复录入,数据录入工作量大,增加了基层负担。同时,数据共享无法实时更新,影响了系统应用及共享。此外,跨部门、跨行业数据共享交换艰难,精准扶贫需要各行业、各部门数据进行比对、分析,但“数据孤岛”大量存在,给精准扶贫成效带来了较大阻力。不同部门和区域间的数据标准差异,也增加了信息资源共享的难度。
再次,扶贫系统及平台标准不统一。大数据精准扶贫目前仍处于探索阶段,没有经验可循,系统功能不完善,也缺乏统一的系统结构及国家标准。有些精准扶贫大数据系统设计不接地气,操作复杂,与实际工作存在冲突,影响了平台的使用及推广。例如,在全国扶贫开发信息系统中,由于功能开放权限要逐级授权,贫困户新增、删除、自然增减功能每年只开放一次,贫困户的动态管理工作较困难,需要采用原始的纸质资料管理,待系统开放时才能进行录入,增加了基层干部及信息系统工作量,降低了扶贫效率。