参考文献
1.Anderson, R.S., Hallet, B.Sediment transport by wind: Toward a general model.Geological Society of America Bulletin, 1986, 97, 523-535.
2.Anderson, R.S., Haff, P.K.Wind modification and bed response during saltation of sand in air.Acta Mech., 1991, 1, 21-51.
3.Andreotti, B.A two species model of aeolian sand transport.J.Fluid Mech., 2004, 510, 47-70.
4.Ammi, M., Oger, L., Beladjine, D., et al.Three-dimensional analysis of the collision process of a bead on a granular packing.Phys.Rev.E, 2009, 79, 021305.
5.Baas, A.C.W.Wavelet power spectra of aeolian sand transport by boundary layer turbulence.Geophysical Research Letters, 2006, 33, L05403.
6.Baas, A.C.W.Challenges in aeolian geomorphology: Investigating aeolian streamers, Geomorphology,2008, 93, 3-16.
7.Baas, A.C.W., Sherman, D.J.Formation and behavior of aeolian streamers, J.Geophys.Res., 2005,110, F03011, doi:10.1029/2004JF000270.
8.Baas, A.C.W., Sherman, D.J.Spatiotemporal variability of aeolian sand transport in a coastal dune environment, J.Coastal Res., 2006, 22, 1198-1205.
9.Bagnold, R A.The Physics of Blown Sand and desert dunes.Methuen, London, 1941.
10.Bauer, B.O., Davidson Arnott, R.G.D.Aeolian particle flux profiles and transport unsteadiness, J.Geophys.Res.Earth Surf., 2014, 119,doi:10.1002/2014JF003128.
11.Bauer, B.O., Houserb, C.A., Nickling, W.G.Analysis of velocity profile measurements from windtunnel experiments with saltation.Geomorphology, 2004, 59, 81-98.
12.Beladjine, D., Ammi, M., Oger, L., et al.Collision process between an incident bead and a three-dimensional granular packing.Phys.Rev.E, 2007, 75, 061305.
13.Belly, P.Y.Sand movement by wind (with Addendum II by A Kadib).U.S.Army Corps of Engineers,Coastal Engineering Research Center, Tech.Memo.1964.No.1.80 pp.
14.Butterfield, G.R.Grain transport rates in steady and unsteady turbulent airflows.Acta Mech., 1991,Suppl.1, 97-122.
15.Butterfield, G.R.Near-bed mass flux profiles in Aeolian sand transport: high-resolution measurements in a wind tunnel.Earth Surface Processes and Landforms, 1999, 24, 393-412.
16.Chapman, C., Walker, I.J., Hesp, P.A., Bauer, B.O., et al.Reynolds stress and sand transport over a vegetated foredune.Earth Surf.Processes Landforms, 2013, doi:10.1002/esp.3428.
17.Cheng, H., Zou, X.Y., Zhang, C.L.Probability distribution functions for the initial liftoff velocities of saltating sand grains in air.J.Geophys.Res., 2006, 111, D22205, doi:10.1029/2006JD007069.
18.Comola, F., Lehning, M.Energy-momentum-conserving model of splash entrainment in sand and snow saltation.Geophys.Res.Lett., 2017, 44, 1601-1609, doi:10.1002/2016GL071822.
19.Crassous, J., Beladjine, D., Valance, A.Impact of a Projectile on a Granular Medium Described by a Collision Model.Physical Review Letters, 2007, 99, 248001.
20.Crowe, C.T., Sommerfeld, M., Tsuji, Y.Multiphase flows with droplets and particles.CRC Press, Boca Raton, 1998.
21.Cundall, P.A., Strack, O.D.L., A discrete numerical model for granular assemblies.Gèotechnique,1979, 29, 1, 47-65.
22.Davidson-Arnott, R.G.D., Bauer, B.O.Aeolian sediment transport on a beach: Thresholds, intermittency, and high frequency variability.Geomorphology, 2009, 105, 117-126.
23.Davidson-Arnott, R.G.D., MacQuarrie, K., Aagaard, T.The effect of wind gusts, moisture content and fetch length on sand transport on a beach.Geomorphology, 2005, 68, 115-129.
24.Dong, Z.B., Liu, X.P., Li, F., Wang, H.T., Zhao, A.G.Impact entrainment relationship in a saltating cloud.Earth Surface Processes and Landforms, 2002a., 27, 641-658.
25.Dong, Z.B., Liu, X.P.,Wang, H.T., Zhao, A.G.,Wang, X.M.The flux profile of a blowing sand cloud: a wind tunnel investigation.Geomorphology, 2002b., 49, 219-230.
26.Dong, Z.B., Liu, X.P.,Wang, H.T.The aerodynamic roughness with a blowing sand boundary layer(BSBL): A redefinition of the Owen effect, Geophys.Res.Lett., 2003a, 30(0), doi:10.1029/2002GL016318.
27.Dong, Z.B., Liu, X.P.,Wang, H.T., et al.Aeolian sand transport: a wind tunnel model.Sedimentary Geology, 2003b, 161, 71-83.
28.Duan, S.Z., Zhu, W., Zheng, X.J.Numerical investigation on two-grain-bed collisions in windblown sand transport.Powder Technology, 2013, 235: 431-436.
29.Dupont, S., Bergametti, G., Marticorena, B., et al.Modeling saltation intermittency.J.Geophys.Res.Atmos., 2013, 118, doi:10.1002/jgrd.50528.
30.Ellis, J.T.Coherent Structures and Aeolian Saltation.University of South Carolina, 2006.
31.Ellis, J.T., Sherman, D.J., Farrell, E.J., et al.Temporal and spatial variability of Aeolian sand transport: Implications for field measurements.Aeolian Res., 2012, 3, 379-87.
32.Gillette, D.A., Marticorena, B., Bergametti, G.Changes in aerodynamic roughness height by saltating grains: Experiment assessment, test of the theory, and operational parameterization.J.Geophys.Res.,1998, 103(D6), 6203-6209.
33.Gomes L, Arrúe J L, López M V, et al.Wind erosion in semi.arid agricultural area of Spain: the WELSONS project.Catena, 2003a, 52 (3.4): 235-256.
34.Gomes L, Rajot J L, Alfaro S C, et al.Validation of a dust production model from measurements performed in semi.arid agriculture areas of Spain and Niger.Catena, 2003b, 52 (3.4): 257-271.
35.Ho, T.D., Dupont, P., Ould El Moctar, A., et al., Particle velocity distribution in saltation transport.Phys.Rev.E, 2012, 85, 052301.
36.Huang, H.J., Bo, T.L., Zhang, R.Exploration of splash function and lateral velocity based on threedimensional mixed-size grain/bed collision.Granular Matter, 2017, 9, 73, DOI10.1007/s10035-017-0759-9.
37.Huang, N., Wang, C., Pan, X.Y.Simulation of aeolian sand saltation with rotational motion.J.Geophys.Res., 2010, 115, D22211, doi:10.1029/2009JD013593.
38.Huang, N., Zheng, X.J., Zhou, Y.H.Simulation of sand movement and probability density function of liftoff velocities of sand particles.J Geophys Res., 2006, 111, D20201, doi:10.1029/2005JD006559.
39.Iversen, J.D., Rasmussen, K.R.The effect of wind speed and bed slope on sand transport.Sedimentology, 1999, 46, 723-731.
40.Jackson, D.W., McCloskey, J.Preliminary results from a field investigation of aeolian sand transport using high resolution wind and transport measurements.Geophys.Res.Lett.,1997, 24 (2), 163-166.
41.Jiang, H., Dun, H.C., Tong, D., et al.Sand transportation and reverse patterns over leeward face of sand dune.Geomorphology, 2017, 283, 41-47.
42.Kalman, R.E.A new approach to linear filtering and prediction problems.J.Basic Eng., 1960, 82-D,35-45.
43.Kang, L.Q.Discrete particle model of aeolian sand transport: Comparison of 2D and 2.5D simulations.Geomorphology, 2012, doi:10.1016/j.geomorph.2011.12.005.
44.Kang, L.Q., Guo, L.J.Eulerian-Lagrangian simulation of aeolian sand transport.Powder Technology,2006, 162, 111-120.
45.Kang, L.Q., Guo, L.J., Liu, D.Y.Reconstructing the vertical distribution of the aeolian saltation mass flux based on the probability distribution of lift-off velocity.Geomorphology, 2007, doi:10.1016/j.geomorph.2007.07.005
46.Kang, L.Q., Liu, D.Y.Numerical investigation of particle velocity distributions in aeolian sand transport.Geomorphology, 2010, 115, 156-171.
47.Kang, L.Q., Zou, X.Y.Vertical distribution of wind-sand interaction forces in aeolian sand transport.Geomorphology, 2011, 25, 361-373.
48.Kawamura, R.Study on sand movement by wind.Univ.Tokyo, Rep.Inst.Sci.Technol., 1951, 5, 95-112 (in Japanese with English abstract).
49.Kok, J.F., Renno, N.O.A comprehensive numerical model of steady state saltation (COMSALT).J.Geophys.Res., 2009, 114, D17204, doi:10.1029/2009JD011702.
50.Kuhn, H.W.The Hungarian Method for the Assignment Problem.Naval Research Logistics Quarterly,1955, 2, 83-97.
51.Lämmel, M., Dzikowski, K., Kroy, K.Grain-scale modeling and splash parametrization for aeolian sand transport.Phys.Rev.E, 2017, 95, 022902.
52.Lee, J.A.A field experiment on the role of small scale wind gustiness in Aeolian sand transport.Earth Surf.Process.Landf., 1987, 12, 331-335.
53.Leenders, J.K., van Box, J.H., Sterk, G.Wind forces and related saltation transport.Geomorphology,2005, 71, 357-372.
54.Li, B.L, McKenna, N.C.A wind tunnel study of aeolian sediment transport response to unsteady winds.Geomorphology, 2014, 214 (1), 261-269.
55.Li, B., Neuman, M.C.Boundary-layer turbulence characteristics during aeolian saltation.Geophysical Research Letters, 2012, 39, DOI:10.1029/2012GL052234.
56.Li,W.Q., Zhou, Y.H.Statistical behaviors of different-sized grains lifting off in stochastic collisions between mixed sand grains and the bed in aeolian saltation.J.Geophys.Res.-Atmospheres, 2007,112, D22106.
57.Li, Z.S., Ni, J.R., Mendoza, C.An analytic expression for wind-velocity profile within the saltation layer.Geomorphology, 2004, 60, 359-369.
58.Li, Z.Q., Wang, Y., Zhang, Y., et al.A Random Pairing Collision Model (RPCM) for Improving the DEM Simulation of Particle-Bed Collisions in Aeolian Sand Transport.Particulate Science and Technology:An International Journal, 2014, 32(1), 86-93, DOI: 10.1080/02726351.2013.829542.
59.MaasH, G., Gruen, A., Papantoniou, D.Particle tracking velocimetry in three-dimensional flows Part 1: Photogrammetric determination of particle coordinates.Experiments in Fluids, 1993, 15, 133-146.
60.Marticorena, B., Bergametti, G.Modeling the atmospheric dust cycle.Part 1: Design of a soil-derived dust emission scheme.J.Geophys.Res., 1995, 100(D8), 16,415-16,430.
61.Marticorena, B., Bergametti, G., Aumont, B., et al.Modeling the atmospheric dust cycle 2.Simulation of Saharan dust sources.J.Geophys.Res., 1997, 102(D4), 4387-404.
62.Martin, R.L., Barchyn, T.E., Hugenholtz, C.H., et al.Timescale dependence of aeolian sand flux observations under atmospheric turbulence.J.Geophys.Res.Atmos., 2013, 118, doi:10.1002/jgrd.50687
63.McEwan, I.K., Willetts, B.B.Adaptation of the near-surface wind to the development of sand transport.Journal of Fluid Mechanics, 1993, 252, 99-115.
64.Mindlin, R.D., Deresiewicz, H.Elastic spheres in contact under varying oblique forces.Transactions of ASME, Series E, Journal of applied Mechanics, 1953, 20, 327-344.
65.Mei, F., Rajot J., Alfaro S., Gomes, L., et al.Validating a dust production model by field experiment in Mu Us Desert, China.Chinese Science Bulletin, 2006, 51(7), 878-884.
66.Mitha, S., Tran, M., Werner, B., et al.The grain-bed impact process in aeolian saltation.Acta Mech., 1986, 63, 267-278.
67.Nalpanis, P., Hunt, J.C.R., Barrett, C.F.Saltating particles over flat beds.J.Fluid Mech., 1993,251, 661-685.
68.Ni, J.R., Li, Z.S., Mendoza, C.Vertical profiles of Aeolian sand-mass flux.Geomorphology, 2002,49, 205-218.
69.O'Brien, P., Neuman, M.C.PTV measurement of the spanwise component of aeolian transport in steady state.Aeolian Research, 2016, 20, 126-138.
70.O'Brien, P., Neuman, M.C.An experimental study of the dynamics of saltation within a three dimensional framework.Aeolian Research, 2017, http://dx.doi.org/10.1016/j.aeolia.2017.09.003.
71.O'Brien, P., Neuman, M.C.Experimental validation of the near-bed particle-borne stress profile in aeolian transport systems.J.Geophys.Res., Earth Surface, 2019, doi:10.1029/2019JF005114
72.Oger, L., Ammi, M., A., Valance, D., et al.Discrete Element Methods to study the collision of one rapid sphere on 2D and 3D packings.The European Physical Journal E, 2005, 17, 467-476.
73.Oger, L., Ammi, M., A., Valance, D., et al.Study of the collision of one rapid sphere on 3D packings: Experimental and numerical results.Computers and Mathematics with Applications, 2008, 55, 132-148.
74.Ohmi, K, Sapkota, A.Particle tracking velocimetry using cellular neural networks.International Joint Conference on neural networks, 2006, Vancouver, Canada, 3963-3969.
75.Okamoto, K., Schmidt, W.D., Hassan, Y.A.Spring model tracking algorithm for three-dimensional particle image velocimetry.ASME Fluids Engineering Division, 1995, 209, 91-97.
76.Owen, P.R.Saltation of uniform grains in air.J.Fluid Mech., 1964, 20, 225-242.
77.Pereira, F., Ghan, M.Defocusing digital particle image velocimetry and the three-dimensional characterization of two-phase flows.Measurement Science and Technology, 2002, 13(2), 669-683.
78.Pfeifer, S., Schönfeldt, H J.The response of saltation to wind speed fluctuations.Earth Surf.Process.Landf., 2012, 37 (10), 1056-1064.
79.Poortinga, A., Keijsers, J.G.S., Visser, S.M., et al.Temporal and spatial variability in event scale aeolian transport on Ameland, The Netherlands.GeoResJ, 2015, 5, 23-35.
80.Rasmussen, K., and Sørensen, M.The Vertical variation of particle speed and flux density in aeolian salation: Measurement and modelling.Journal of Geophysical Research, 2008, 113.DOI: 10.1029/2007JF000774.
81.Raupach, M.R.Saltation layers, vegetation canopies and roughness lengths.Acta Mech., 1991, Suppl.1, 83-96.
82.Rice, M.A., Willetts, B.B., McEwan, I.K.An experimental study of multiple grain-size ejecta produced by collisions of saltating grains with a flat bed.Sedimentology, 1995, 42, 695-706.
83.Reid, D.B.An Algorithm for Tracking Multiple Targets.Transactions on Automatic Control, 1979, 6,843-854.
84.Rioual, F., Valance, A., Bideau, D.Collision process of a bead on a two-dimensional bead packing:Importance of the inter-granular contacts.Europhysics Letters, 2003, 61, 194-200.
85.Shao, Y.P., Li, A.Numerical modelling of saltation in the atmospheric surface layer.Boundary-Layer Meteorol., 1999, 91, 199-225.
86.Shao, Y.P.Physics and modeling of wind erosion.Kluwer Academic Publishers, Dordrecht, Netherlands, 2000.
87.Sherman, D.J., Li, B.Predicting aeolian sand transport rates: A reevaluation of models.Aeolian Research, 2011,doi:10.1016/j.aeolia.2011.06.002.
88.Sherman, D.J., Jackson, D.W.T., Namikas, S.L., et al.Wind-blown sand on beaches: an evaluation of models.Geomorphology, 1988, 22, 113-133.
89.Shi, F., Huang, N.Measurement and simulation of sand saltation movement under fluctuating wind in a natural field environment.Physica A, 2012, 391, 474-484.
90.Sørensen, M.On the rate of aeolian sand transport.Geomorphology, 2004, 59, 53-62.
91.Sterk, G., Jacobs, A.F.G., van Boxel, J.H.The effect of turbulent flow structures on saltation transport in the atmospheric boundary layer.Earth Surface Processes and Landforms, 1998, 23, 877-887.
92.Sun, Q.C., Wang, G.Q., Xu, Y., DEM Applications to Aeolian Sediment Transport and Impact Process in Saltation.Particulate Science and Technology: An International Journal, 2001, 19(4), 339-353.
93.Sun, W.H., Huang, N.Influence of slope gradient on the behavior of saltating sand particles in a wind tunnel.Catena, 2017, 148, 145-152.
94.Tanabe, T., Shimada, T., Ito, N., et al.Splash detail due to a single grain incident on a granular bed.Phys.Rev.E, 2017, 95, 022906.
95.Valance, A., Crassous, J.Granular medium impacted by a projectile: Experiment and model.Eur.Phys.J.E, 2009, 30, 43-54.
96.Walton, O.R., Braun, R.L.Viscosity, granular-temperature, and stress caculations for shearing a ssemblies of inelastic, frictional disks, J.Rheol., 1986, 80, 949.
97.Wang, Y ., Mason, M.T.Two-dimensional rigid body collisions with friction.J.Appl.Mech., 1992,59, 635-642.
98.Wang, D., Wang, Y., Yang, B.Statistical analysis of sand grain/bed collision process recorded by high-speed digital camera.Sedimentology, 2008, 55, 461-470.
99.Werner, B.T., Haff, P.K.The impact process in aeolian saltation: two dimensional simulations.Sedimentology, 1988, 35, 189-196.
100.Werner, B.T.A steady-state model of wind-blown sand transport.J.Geol., 1990, 98, 1, 1-16.
101.White, B.R.Soil transport by winds on Mars, J.Geophys.Res., 1979, 84,4643-4651.
102.Willetts, B.B., Rice, M.A.Collisions in aeolian saltation.Acta Mech., 1986, 63, 255-265.
103.Willetts, B.B., Rice, M.A.Collision of quartz grains with a sand bed: the influence of incident angle.Earth Sur.Proc.Landforms, 1989, 14,719-730.
104.Xiao,F.J., Dong, Z.B., Guo, L.J., et al.Sand particle lift-off velocity measurements and numerical simulation of mass flux distributions in a wind tunnel.Journal of Arid Land, 2017, 9(3): 331-344.
105.Xiao, F.J., Guo, L.J., Li, D.B., et al.Discrete particle simulation of mixed sand transport.Particuology, 2012, 10, 221-228.
106.Xie, L., Ling, Y.Q., Zheng, X.J.Laboratory measurement of saltating sand particles' angular velocities and simulation of its effect on saltation trajectory, J.Geophys.Res., 2007, 112, D12116, doi:10.1029/2006JD008254.
107.Xing, M., Guo, L.J.A modified probability distribution of ejection state of sand grains in equilibrium Aeolian sand transport.Physics Letters, 2004, 332: 389-397.
108.Xing, M., He, C.Y.3D ejection behavior of different sized particles in the grain-bed collision process.Geomorphology, 2013, 187, 94-100.
109.Yang, B., Wang, Y., Zhang, Y.The 3-D spread of saltation sand over a flat bed surface in aeolian sand transport.Advanced Powder Technology, 2009, 20(4), 303-309.
110.Yin, X., Huang, N., Wang, Z.S.A numerical investigation into sand grain/slope bed collision.Powder Technology, 2017, 314, 28-38.
111.Zhang, W., Kang, J.H., Lee, S.J.Tracking of saltating sand trajectories over a flat surface embedded in an atmospheric boundary layer.Geomorphology, 2007, 86, 320-331.
112.Zheng, X.J., Cheng, N., Xie, L.A three-dimensional analysis on lift-off velocities of sand grains in wind-blown sand flux.Earth Surf.Process.Landforms, 2008, 33, 1824-1838.
113.Zheng, X.J., Xie, L., Zou, X.Y.Theoretic predication of lift off angular velocity distribution of sand particles in blown sand flux.Journal of Geophysical Research, 2006, 111, D11109.
114.Zhou, Y.H., Guo, X., Zheng, X.J.Experimental measurement of wind sand flux and sand transport for naturally mixed sands.Phys Rev E, 2002, 66, 021305.
115.Zhou, Y.H., Li, W.Q., Zheng, X.J.PDM simulations of stochastic collisions of sandy grain-bed with mixed size in aeolian sand saltation, J.Geophys.Res., 2006, 111, D15108, doi:10.1029/2005JD006604
116.Zingg, A.W.Wind tunnel studies of the movement of sedimentary material.Proc.5th Hydraulic Conf.Inst.of Hydraulics, 1953, Iowa City, 111-135.
117.Zou, X.Y., Cheng, H., Zhang, C.L, et al.Effects of the Magnus and Saffman forces on the saltation trajectories of sand grain.Geomorphology, 2007, 90, 11-22.
118.Zou, X.Y.,Wang, Z.L., Hao, Q.Z., et al.The distribution of velocity and energy of saltating sand grains in a wind tunnel.Geomorphology, 2001, 36, 155-165.
119.李志强,王元,王丽,等.风沙流中近床面沙粒三维运动的LES-DEM 分析[J].空气动力学学报,2011, 29(6), 784-788, 800.
120.梅凡民, 蒋缠文.风沙颗粒运动的数字高速摄影图像的分割算法[J].力学学报, 2012, 01,82-87.
121.梅凡民,雒遂,陈金广.一种改进的高浓度风沙图像的动态灰度阈值分割算法[J].力学学报,2018,50(03), 699-707.
122.梅凡民,Rajot Jean, Alfaro Stephen, 等.毛乌素沙地的粉尘释放通量观测及DPM模型的野外实验验证[J].科学通报,2006, 51(11), 1326-1332.
123.张洋, 王元, 李志强.结合双向法则的松弛迭代粒子追踪测速法[J].空气动力学学报, 2010, 28(3), 250-254.
124.韩崇昭, 朱洪艳, 段战胜, 等.多源信息融合(第2版)[M].北京:清华大学出版社, 2010.
125.梅凡民.中国北方典型区域风蚀粉尘释放的实验观测和数值模拟[M].西安:西北工业大学出版社, 2013.
126.孙其成,王光谦.颗粒物质力学导论[M].北京:科学出版社, 2009.
127.鲍晓利.三维粒子跟踪测速系统中的三维重构技术研究[D].大连理工大学博士论文,2013,15-45.
128.彭青宇.基于卡尔曼滤波和匈牙利算法的沙粒轨迹追踪算法[D].西安工程大学学士论文,2020.
129.禹明忠.PIV技术和颗粒三维运动规律的研究[D].清华大学博士论文,2002, 76-82.
130.魏明孝.风沙流中多颗粒碰撞的恢复系数研究[D].西安工程大学学士论文,2020.