参考文献
[1]Ting D,Peng L,Varadarajan A V,et al.Deep learning in ophthalmology:the technical and clinical considerations[J].Progress in Retinal and Eye Research,2019,9,72:100759.
[2]张明,周思睿.把握挑战和机遇:人工智能与眼科诊疗[J].中华眼底病杂志,2021,37(2):93-97.
[3]Lecun Y,Bengio Y,Hinton G.Deep learning[J].Nature,2015,521(7553):436.
[4]Gulshan V,Peng L,Coram M,et al.Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs[J].JAMA,2016,316(22):2402-2410.
[5]Van der Heijden A A,Abramoff M D,Verbraak F,et al.Validation of automated screening for referable diabetic retinopathy with the IDx-DR device in the Hoorn Diabetes Care System[J].Acta Ophthalmol,2018,96(1):63-68.
[6]Yao Z,Zhang Z,Xu L Q,et al.Generic features for fundus image quality evaluation[C].IEEE International Conference on E-Health Networking,Applications and Services,2016:1-6.
[7]Saha S K,Fernando B,Cuadros J,et al.Deep learning for automated quality assessment of color fundus images in diabetic retinopathy screening[J].Journal of Digital Imaging,2017,31(10):15-19.
[8]Yu H,Agurto C,Barriga S,et al.Automated image quality evaluation of retinal fundus photographs in diabetic retinopathy screening[C].2012 IEEE Southwest Symposium on Image Snalysis and Interpretation,2012:125-128.
[9]Lee S C,Wang Y.Automatic retinal image quality assessment and enhancement[J].International Society for Optics and Photonics,1999,3661:1581-1590.
[10]Lalonde M,Gagnon L,Boucher M C.Automatic visual quality assessment in optical fundus images[C].Proceedings of Vision Interface,2001,259-264.
[11]Bartling H,Wanger P,Martin L.Automated quality evaluation of digital fundus photographs[J].Acta Ophthalmologica,2009,87(6):643-647.
[12]Paulus J,Meier J,Bock R,et al.Automated quality assessment of retinal fundus photos[J].International Journal of Computer Assisted Radiology and Surgery,2006,10(6):557-564.
[13]Mahapatra D,Roy P K,Sedai S,et al.Retinal image quality classification using saliency maps and CNNs[J].Interacting with Computers,2016,10(4):385-399.
[14]Mahapatra D,Roy P K,Sedai S,et al.A CNN based neurobiology inspired approach for retinal image quality assessment[C].International Conference of the IEEE Engineering in Medicine&Biology Society,2016:1304-1307.
[15]Tennakoon R,Mahapatra D,Roy P.Image quality classification for DR screening using convolutional neural networks[C].3th MICCAI Workshop on Ophthalmic Medical Image Analysis,2016:113-120.
[16]Sun J,Wan C,Jun C,et al.Retinal image quality classification using fine-tuned CNN[C].International Workshop on Fetal and Infant Image Analysis International Workshop on Ophthalmic Medical Image Analysis,2017.
[17]Li W,Abtahi F,Zhu Z,et al.EAC-Net:a region-based deep enhancing and cropping approach for facial action unit detection[C].Conference on Computer Analysis of Images and Patterns,2017:103-110.
[18]Yao Y,Zhang D B,Xiong L I,et al.Retinal image normalization based on background estimation and homomorphic filtering[J].Computer Engineering,2012,38(14):187-189.
[19]Setiawan A W,Mengko T R,Santoso O S,et al.Color retinal image enhancement using CLAHE[C].International Conference on ICT for Smart Society,2013:1-3.
[20]Jintasuttisak T,Intajag S.Color retinal image enhancement by Rayleigh contrast-limited adaptive histogram equalization[C].International Conference on Control.IEEE,2014.
[21]Shamsudeen F M,Raju G.Enhancement of fundus imagery[C].2016 International Conference on Next Generation Intelligent Systems(ICNGIS).IEEE,2017.
[22]Mei Z,Kai J,Wang S,et al.Color retinal image enhancement based on luminosity and contrast adjustment[J].IEEE transactions on bio-medical engineering,2018,65(3):521-527.
[23]Zhu M Y,Su F,Li W J.Improved multi-scale retinex approaches for color image enhancement[J].Appl Mechanics Mater,2011,39:34-37.
[24]Goodfellow I,Pouget-Abadie J,Mirza M,et al.Generative adversarial nets[C].Advances in Neural Information Processing Systems,2014:2674-2680.
[25]王坤峰,苟超,段艳杰,等.生成式对抗网络GAN的研究进展与展望[J].自动化学报,2017,3(3):321-332.
[26]Isola P,Zhu J Y,Zhou T,et al.Image-to-image translation with conditional adversarial networks[C].IEEE Conference on Computer Vision and Pattern Recognition,2017:1125-1134.
[27]Zhu J Y,Park T,Isola P,et al.Unpaired image-to-image translation using cycle-consistent adversarial networks[C].IEEE International Conference on Computer Vision,2017:2223-2232.
[28]You Q,Wan C,Sun J,et al.Fundus image enhancement method based on CycleGAN[C].2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society(EMBC).IEEE,2019.
[29]Matsui M,Tashiro T,Matsumoto K,et al.A study on automatic and quantitative diagnosis of fundus photographs.I.Detection of contour line of retinal blood vessel images on color fundus photographs[J].Nippon Ganka Gakkai zasshi,1973,77(8):907-918.
[30]Baudoin C E,Lay B J,Klein J C.Automatic detection of microaneurysms in diabetic fluorescein angiography[J].Revue dÉpidémiologie et de SantéPublique,1984,32(3/4):254-261.
[31]Abramoff M D,Folk J C,Han D P,et al.Automated analysis of retinal images for detection of referable diabetic retinopathy[J].JAMA Ophthalmology,2013,131(3):351-357.
[32]Soto-Pedre E,Navea A,Millan S,et al.Evaluation of automated image analysis software for the detection of diabetic retinopathy to reduce the ophthalmologists'workload[J].Acta Ophthalmologica,2015,93(1):e52-e56.
[33]Wilkinson C P,Iii F,Klein R E,et al.Proposed international clinical diabetic retinopathy and diabetic macular edema disease severity scales[J].Ophthalmology,2003,110(9):1677-1682.
[34]Abramoff M D,Lou Y,Erginay A,et al.Improved automated detection of diabetic retinopathy on a publicly available dataset through integration of deep learning[J].Investigative ophthalmology&visual science,2016,57(13):5200-5206.
[35]Ting D,Cheung C,Lim G,et al.Development and validation of a deep learning system for diabetic retinopathy and related eye diseases using retinal images from multiethnic populations with diabetes[J].JAMA,2017,318(22):2211-2223.
[36]Gargeya R,Leng T.Automated identification of diabetic retinopathy using deep learning[J].Ophthalmology,2017:962-969.
[37]Wang L,Gao P,Zhang M,et al.Prevalence and ethnic pattern of diabetes and prediabetes in China in 2013[J].JAMA,2017,317(24):2515-2523.
[38]中华医学会眼科学分会眼视光学组.重视高度近视防控的专家共识(2017)[J].中华眼视光学与视觉科学杂志,2017,7:385-389.
[39]Ruiz-Medrano J,Montero J A,Flores-Moreno I,et al.Myopic maculopathy:current status and proposal for a new classification and grading system(ATN)[J].Progress in retinal and eye research,2019,69:80-115.
[40]Liu J,Wong D W K,Lim J H,et al.Detection of pathological myopia by PAMELA with texturebased features through an SVM approach[J].Journal of Healthcare Engineering,2019,1:1-11.
[41]Huazhu F,Fei L,JoséI O,et al.PALM:pathologic myopia challenge,IEEE dataport,2019.[EB/OL].[2019-07-08].http:dx.doi.org/10.21227/55pk-8z03.
[42]Varadarajan A V,Poplin R,Blumer K,et al.Deep learning for predicting refractive error from retinal fundus images[J].Investigative ophthalmology&visual science,2018,59(7):2861-2868.
[43]Septiarini A,Khairina D M,Kridalaksana A H,et al.Automatic glaucoma detection method applying a statistical approach to fundus images[J].Healthcare Informatics Research,2018,24(1):53-60.
[44]Acharya R U,Yu W,Zhu K,et al.Identification of cataract and post-cataract surgery optical images using artificial intelligence techniques[J].Journal of Medical Systems,2010,34(4):619-628.
[45]Gao X,Lin S,Wong T Y.Automatic feature learning to grade nuclear cataracts based on deep learning[J].Springer International Publishing,2015,62(11):2693-2701.
[46]Lam C,Yu C,Huang L,et al.Retinal lesion detection with deep learning using image patches[J].Investigative ophthalmology&visual science,2018,59(1):590-596.
[47]Fu HZ,Cheng J,Xu Y W,et al.Joint optic disc and cup segmentation based on multi-label deep network and polar transformation[J].IEEE Trans Med Imag,2018,37(7):1597-1605.
[48]Smart T J,Richards C J,Bhatnagar R,et al.A study of red blood cell deformability in diabetic retinopathy using optical tweezers[C].International Society for Optics and Photonics,2015:9548-9556.
[49]Irshad S,Akram M U.Classi f ication of retinal vessels into arteries and veins for detection of hypertensive retinopathy[C].Biomedical Engineering Conference,2014:133-136.
[50]Cheung Y L,Zheng Y,Hsu W,et al.Retinal vascular tortuosity,blood pressure,and cardiovascular risk factors[J].Ophthalmology,2010,118(5):812-818.
[51]Han Z,Yin Y,Meng X,et al.Blood vessel segmentation in pathological retinal image[C].IEEE International Conference on Data Mining Workshop,2014:960-967.
[52]Staal J,Abramoff M D,Niemeijer M,et al.Ridge-based vessel segmentation in color images of the retina[J].IEEE Transactions on Medical Imaging,2004,23:501-509.
[53]Fraz M M,Remagnino P,Hoppe A,et al.An ensemble classification-based approach applied to retinal blood vessel segmentation[J].IEEE Transactions on Biomedical Engineering,2012,59:2538-2548.
[54]Hoover A D,Kouznetsova V,Goldbaum M.Locating blood vessels in retinal images by piecewise threshold probing of a matched filter response[J].IEEE Transactions on Medical Imaging,2000,19(3):203-210.
[55]杨文英.中国糖尿病的流行特点及变化趋势[J].中国科学:生命科学,2018,48(8):812-819.
[56]Kande G B,Savithri T S,Subbaiah P V.Automatic detection of microaneurysms and hemorrhages in digital fundus images[J].Journal of Digital Imaging,2010,23(4):430-437.
[57]X Zhang,G Thibault,E Decencière,et al.Exudate detection in color retinal images for mass screening of diabetic retinopathy[J].Medical Image Analysis,2014,18(7):1026-1043.
[58]Porwal P,Pachade S,Kamble R,et al.Meriaudeau,Indian diabetic retinopathy image dataset(IDRID):a database for diabetic retinopathy screening research[J].Data,2018,3(3):25-36.
[59]Achanta R,Hemami S,Estrada F,et al.Frequency-tuned salient region detection[C].Computer Vision and Pattern Recognition,2009,22(9/10):1597-1604.
[60]Zhang Z,Yin F S,Liu J,et al.ORIGA-light:an online retinal fundus image database for glaucoma analysis and research[C].International Conference of IEEE Engineering in Medicine&Biology Society,2010:3065-3068.
[61]Decencière E,Zhang X,Cazuguel G,et al.Feedback on a publicly distributed image database:the Messidor database[J].Image Analysis&Stereology,2014,33(3):231-234.
[62]Orlando J I,Prokofyeva E,Blaschko M B.A discriminatively trained fully connected conditional random field model for blood vessel segmentation in fundus images[J].IEEE Transactions on Biomedical Engineering,2016,64(1):16-27.
[63]Esedoglu S,Shen J.Digital inpainting based on the Mumford-Shah-Euler image model[J].European Journal of Applied Mathematics,2002,13(4):353-370.
[64]Maninis K K,Pont-Tuset J,Arbeláez P,et al.Deep retinal image understanding[C].International Conference on Medical Image Computing and Computer-Assisted Intervention,2016:140-148.
[65]Xie S,Tu Z.Holistically-nested edge detection[J].International Journal of Computer Vision,2015,125(1/3):1-16.
[66]Fitzgibbon A,Pilu M,Fisher R B.Direct least square fitting of ellipses[J].IEEE Transactions on pattern analysis and machine intelligence,1999,21(5):476-480.
[67]Carmona E J,Rincón M,García-FeijoóJ,et al.Identification of the optic nerve head with genetic algorithms[J].Artificial Intelligence in Medicine,2008,43(3):243-259.
[68]李刘东.改进粒子群优化算法在眼底出血点分割中的研究[D].哈尔滨:哈尔滨工业大学,2017.
[69]Lin T Y,Goyal P,Girshick R,et al.Focal Loss for Dense Object Detection[C].IEEE International Conference on Computer Vision,2017:2999-3007.
[70]Deng J,Dong W,Socher R,et al.Imagenet:a large-scale hierarchical image database[C].2009 IEEE conference on computer vision and pattern recognition.IEEE,2009:248-255.
[71]Krizhevsky A,Sutskever I,Hinton G E.Imagenet classification with deep convolutional neural networks[C].Advances in neural information processing systems,2012:1097-1105.
[72]Szegedy C,Liu W,Jia Y,et al.Going deeper with convolutions[C].Proceedings of the IEEE conference on computer vision and pattern recognition,2015:1-9.
[73]HintonG E,Osindero S,Teh Y W.A fast learning algorithm for deep belief nets[J].Neural computation,2006,18(7):1527-1554.
[74]Schmidhuber J.Deep learning in neural networks:an overview[J].Neural networks,2015,61:85-117.
[75]LeCun Y,Bottou L,Bengio Y,et al.Gradient-based learning applied to document recognition[J].Proceedings of the IEEE,1998,86(11):2278-2324.
[76]He K,Zhang X,Ren S,et al.Deep residual learning for image recognition[C].Proceedings of the IEEE conference on computer vision and pattern recognition,2016:770-778.
[77]Xie S,Girshick R,Dollár P,et al.Aggregated residual transformations for deep neural networks[C].Proceedings of the IEEE conference on computer vision and pattern recognition,2017:1492-1500.
[78]Hu J,Shen L,Sun G.Squeeze-and-excitation networks[C].Proceedings of the IEEE conference on computer vision and pattern recognition,2018:7132-7141.
[79]Smith L N.Cyclical learning rates for training neural networks[C].2017 IEEE Winter Conference on Applications of Computer Vision(WACV).IEEE,2017:464-472.
[80]Yau J W Y,Rogers S L,Kawasaki R,et al.Global Prevalence and Major Risk Factors of Diabetic Retinopathy[J].Diabetes Care,2012,35:556-564.
[81]Lee R,Wong T Y,Sabanayagam C.Epidemiology of diabetic retinopathy,diabetic macular edema and related vision loss[J].Eye Vis,2015,2:17.
[82]Flaxman S R,Bourne R R A,Resnikoff S,et al.Global causes of blindness and distance vision impairment 1990—2020:a systematic review and meta-analysis[J].Lancet Glob Health,2017,5:e1221.
[83]Pieczynski J,Grzybowski A.Review of diabetic retinopathy screening methods and programmes adopted in different parts of the world[J].European Ophthalmic Review,2015,9:49-55.
[84]翁铭,郑博,吴茂念,等.基于深度学习的DR筛查智能诊断系统的初步研究[J].国际眼科杂志,2018,3:568-571.
[85]Philip S,Fleming A D,Goatman K A,et al.The efficacy of automated“disease/no disease”grading for diabetic retinopathy in a systematic screening programme[J].BrJOphthalmol,2007,91(11):1512-1517.
[86]李治玺,张健,FONG NELLIE,等.人工智能初筛分流在大规模糖尿病视网膜病变筛查中的应用[J].中华医学杂志,2020,100(48):3835-3840.
[87]中国医药教育协会智能医学专委会智能眼科学组,国家重点研发计划“眼科多模态成像及人工智能诊疗系统的研发和应用”项目组.基于眼底照相的糖尿病视网膜病变人工智能筛查系统应用指南[J].中华实验眼科杂志,2019,37(8):593-598.
[88]李和恩.基于眼底荧光血管造影的糖尿病视网膜病变新生血管及黄斑水肿的智能诊断系统[D].泸州:西南医科大学,2020.
[89]Kermany D S,Goldbaum M,Cai W,et al.Identifying medical diagnoses and treatable diseases by image-based deep learning[J].Cell,2018,172:1122-1131.e9.
[90]Bellemo V,Lim Z,Lim G,et al.Artificial intelligence using deep learning to screen for referable and vision-threatening diabetic retinopathy in Africa:a clinical validation study[J].Lancet Digital Health,2019,1(1):e35-44.
[91]Wong W L,Su X,Li X,et al.Global prevalence of age-related macular degeneration and disease burden projection for 2020 and 2040:a systematic review and meta-analysis[J].Lancet Glob Health,2014,2(2):e106-16.
[92]Wong C W,Yanagi Y,Lee W K,et al.Age-related macular degeneration and polypoidal choroidal vasculopathy in Asians[J].Prog Retin Eye Res,2016,53:107-139.
[93]Lim L S,Mitchell P,Seddon J M,et al.Age-related macular degeneration[J].Lancet,2012,379(9827):1728-1738.
[94]薛瑢,万光明.萎缩型老年性黄斑变性的治疗研究进展[J].中华眼底病杂志,2019,35(1):94-98.
[95]白玉婧,黎晓新.新生血管性老年性黄斑变性药物治疗面临的挑战与未来的发展趋势[J].中华眼底病杂志,2016,32(1):3-7.
[96]Burlina P M,Joshi N,Pekala M,et al.Automated grading of age-related macular degeneration from color fundus images using deep convolutional neural networks[J].JAMA Ophthalmol,2017,135(11):1170-1176.
[97]Keel S,Li Z,Scheetz J,et al.Development and validation of a deep-learning algorithm for the detection of neovascular age-related macular degeneration from colour fundus photographs[J].Clin Exp Ophthalmol,2019,47(8):1009-1018.
[98]Motozawa N,An G,Takagi S,et al.Optical Coherence Tomography-Based Deep-Learning Models for Classifying Normal and Age-Related Macular Degeneration and Exudative and Non-Exudative Age-Related Macular Degeneration Changes[J].Ophthalmol Ther,2019,8(4):527-539.
[99]Hrvoje Bogunovi,Sebastian M.Waldstein,Thomas Schlegl,et al.Prediction of anti-VEGF treatment requirements in neovascular AMD using a machine learning approach[J].Invest,Ophthalmol,Vis,Sci,2017,58(7):3240-3248.
[100]Brown D M,Michels M,Kaiser P K,et al.Ranibizumab versus verteporfin photodynamic therapy for neovascular age-related macular degeneration:two-year results of the ANCHOR study[J].Ophthalmology,2009,116(1):57-65.
[101]Schmidt-Erfurth U,Bogunovic H,Sadeghipour A,et al.Machine learning to analyze the prognostic value of current imaging biomarkers in neovascular age-related macular degeneration[J].Ophthalmol Retina,2018,2(1):24-30.
[102]Holden B A,Fricke T R,Wilson D A,et al.Global prevalence of myopia and high myopia and temporal trends from 2000 through 2050[J].Ophthalmology,2016,123(5):1036-1042.
[103]Ohno-Matsui K.Pathologic Myopia[J].Asia Pac J Ophthalmol(Phila),2016,5(6):415-423.
[104]Ohno-Matsui K,Kawasaki R,Jonas J B,et al.International photographic classification and grading system for myopic maculopathy[J].Am J Ophthalmol,2015,159(5):877-883.
[105]Hemelings R,Elen B,Blaschko M B,et al.Pathological myopia classification with simultaneous lesion segmentation using deep learning[J].Comput Methods Programs Biomed,2021,199:105.
[106]DU R,Xie S,Fang Y,et al.Deep Learning Approach for Automated Detection of Myopic Maculopathy and Pathologic Myopia in Fundus Images[J].Ophthalmol Retina,2021,18:243-246.
[107]Li Y,Feng W,Zhao X,et al.Development and validation of a deep learning system to screen vision-threatening conditions in high myopia using optical coherence tomography images[J].Br J Ophthalmol,2020,3:178.
[108]Cahyo D A Y,Wong D W K,Yow A P,et al.Volumetric Choroidal Segmentation Using Sequential Deep Learning Approach in High Myopia Subjects[J].Annu Int Conf IEEE Eng Med Biol Soc,2020,6:1286-1289.
[109]杨卫华.智能眼科概论[M].武汉:湖北科学技术出版社,2019:56-57.
[110]Yang W H,Zheng B,Wu M N,et al.An evaluation system of fundus photograph-based intelligent diagnostic technology for diabetic retinopathy and applicability for research[J].Diabetes Ther,2019,10(5):1811-1822.