参考文献
参考文献
[1]Altman E I,Haldeman R G,Narayanan P,1977.ZETAM analysis a new model to identify bankruptcy risk of corporations[J].Journal of Banking and Finance,1(1):29-54.
[2]Altman E I,Marco G,Vareto F,1994.Corporate distress diagnosis:comparisons using linear discriminant analysis and neural networks[J].Journal of Banking and Finance,(18):505-529.
[3]Altman E I,1968.Financial ratios,discriminant analysis and the prediction of corporate bankruptcy[J].The Journal of Finance,23(4):589-609.
[4]Apergis N,Payne J E,2013.European banking authority stress tests and bank failure:evidence from credit risk and macroeconomic factors[J].Banking and Finance Review,5(2):23-32.
[5]Baesens B,Van Gestel T,Viaene S,et al.,2003.Bench marking state-of-the-rat classification algorithm for credit scoring[J].Journal of the Operation Research Society,6(54):627-635.
[6]Baesens B,2003.Using neural network rule extraction and decision tables for credit-risk evaluation[J].Management Science,49(3):313-329.
[7]Bartual C,García F,Giménez V,2012.Credit risk analysis:reflections on the use of the logit model[J].Journal of Applied Finance and Banking,2(6):13.
[8]Beaver W H,1966.Financial ratios as predictors of failure[J].Journal of Accounting Research,4(3):71-111.
[9]Coats P,Fant L,1993.Recognizing financial distress tool[J].Financial Mangement,1(22):142-155.
[10]Coffman J Y,1986.The proper role of tree analysis in forecasting the risk behavior of borrowers[J].MDS Reports,Management Decision System,Atlanta,1986:3-9.
[11]Collins R A,Green R D,1982.Statistical methods for bankruptcy forecasting[J].Journal of Economics and Business,34(4):349-354.
[12]Desai V S,Crook J N,Overstreet G A,1996.A comparison of neural networks and linear scoring models in the credit union environment[J].European Journal of Operational Research,95(1):24-37.
[13]Dutta,Shekhar,1988.Bond rating:a nonconservative application of neural networks[C].IEEE.
[14]Figini S,Fantazzini D,2009.Random survival forests models for sme credit risk measurement[J].Methodology and Computing in Applied Probability,11(1):29-45.
[15]Gentry J A,Newbold P,Whitford D T,1987.Funds flow components,financial ratios,and bankrnptcy[J].Journal of Business Finance&Accounting,14(4):595-606.
[16]Glasserman P,Heidelberger P,Shahabuddin P,2000.Efficient monte carlo methods for value-at-risk[R].Risk Management Report.
[17]Hwang C,Yoon K,1981.multiple attribute decision making:methods and applications[M].Berlin:Springer.
[18]Jensen H L,1992.Using Neural networks for credit scoring[J].Managerial Finance,18(6):15-26.
[19]Jensen H L,1992.Using neural networks for credit scoring[J].Managerial Finance,18(6):15-26.
[20]Jones S,Hensher D A,2004.Predicting firm financial distress:a mixed logit model[J].Accounting Review,79(4):1011-1038.
[21]Korablev I,Dwyer D,2007.Power and level validation of moody's KMV EDF credit measuresin North America,Europe,and Asia[J].Economic Notes,(9):9-17.
[22]Kurbat M,Korablev I,2002.Methodology for testing the level of the EDF credit measure[R].Moody's KMV Technical Report.
[23]Libby R,1975.Accounting ratios and the prediction of failure:Some behavioral evidence[J].Journal of Accounting Research,13(1):150-161.
[24]Martin D,1977.Early warning of bank failure:a logit regression approach[J].Journal of Banking and Finance,1(3):249-276.
[25]Nanni L,Lumini A,2009.An experimental comparison of ensemble of classifiers for bankruptcy prediction and credit scoring[J].Expert Systems with Applications,(9):3028-3033.
[26]Ohlson J A,1980.Financial ratios and the probabilistic prediction of bankruptcy[J].Journal of Accounting Research,18(1):109-131.
[27]Samad A,2012.Credit risk determinants of bank failure:evidence from US bank failure[J].International Business Research,5(9):10-21.
[28]Schebesch K B,Stecking R,2005.Support vector machines for classifying and describing credit applicants:detecting typical and critical regions[J].Journal of the Operational Research Society,56(9):1082-1088.
[29]Scott J,1981.The probability of bankruptcy:a comparison of empirical predictions and eoretical models[J].Journal of Banking&Finance,(9):317-344.
[30]Singleton,Surkan.2003.Simulating correlated defaults[J].Paper presented at the Bank of England Conference on Credit Risk Modeling and Regulatory Implications,(9):21-36.
[31]Smith L D,Lawrence E C,1995.Forecasting losses on a liquidating long-term loan portfolio[J].Journal of Banking and Finance,19(6):959-985.
[32]Tudela M,Young G,2003.A merton model approach to assessing the default risk of Uk public companies[J].Bank of England,9(5):12-17.
[33]Vapnik V,Cortes C,1995.Support-vector networks[J].Machine Learning,20(3):273-297.
[34]West D,2000.Neural network credit scoring models[J].Computers and Operational Research,11(27):1131-1152.
[35]West D,2000.Neural network credit scoring models[J].Computers and Operations Research,27(11):1131-1152.
[36]West R C,1985.A factor-analytic approach to bank condition[J].Journal of Banking and Finance,9(2):253-266.
[37][美]本杰明·富兰克林,1997.富兰克林经济论文选集[M].刘学黎译.上海:上海商务印书馆.
[38][英]休谟,1997.休谟经济论文集[M].陈玮译.上海:上海商务印书馆.(https://www.daowen.com)
[39]陈磊,2014.我国ST股票价格泡沫问题研究:基于A股市场的实证检验[J].经济研究导刊,(26):195-197.
[40]陈忠阳,2000.信用风险量化管理模型发展探析[J].国际金融研究,(10):14-19.
[41]程建,朱晓明,2007.信用风险评估模型预测力的验证研究[J].山西财经大学学报,(2):86-92.
[42]戴峰,白庆华,2006.虚拟企业伙伴信用等级灰色关联模型的研究[J].情报杂志,(7):49-50.
[43]邓聚龙,1982.灰色控制系统[J].华中工学院学报,(3):9-18.
[44]丁兆云,2008.互联网多维层次式舆情指数若干计算方法的研究与实现[D].长沙:国防科学技术大学.
[45]方洪全,曾勇,2004.运用多元判别法评估企业信用风险的实例[J].预测,23(4):65-68.
[46]何亮亮,2007.企业潜在信用风险的预警模型[J].大连海事大学学报(社会科学版),6(3):48-50.
[47]黄薇薇,2012.KMV模型对中国上市公司信用风险评估的有效性验证[D].西南财经大学.
[48]霍琳,尚维,徐山鹰,2013.房地产开源舆情指数构建与政策影响研究[J].信息系统学报,(2):57-66.
[49]靳晓宏,王强,付宏,等,2016.主题事件舆情指数的构建及实证研究:以食品安全主题为例[J].情报理论与实践,(12):103-108.
[50]李昌祖,胡思佳,杨延圣,2019.人民美好生活需要舆情指数的构建:基于浙江省的实证研究[J].浙江工业大学学报(社会科学版),18(1):1-9.
[51]李向波,王刚,2007.企业核心竞争能力的多层次灰色关联评价及应用研究[J].工业技术经济,(6):119-121.
[52]刘少伟,2018.投资者舆情指数对股价波动风险影响的研究[J].金融管理研究,(2):220-227.
[53]刘玉峰,贺昌政,2011.Subagging在个人信用评估中的应用研究[J].科技管理研究,(19):188-190.
[54]马超,2016.企业信用综合指数体系构建研究[J].企业管理,(3):121-123.
[55]潘睿,2017.我国上市企业基于KMV模型的实证研究[J].烟台大学学报(哲学社会科学版),(4):108-115.
[56]石晓军,郑海涛,2007.国家信用体系的多维指数方法及实证研究[J].财经研究,(1):4-15.
[57]史小坤,陈昕,2012.商业银行信用风险管理的KMV模型及其修正[J].南京财经大学学报,(4):47-51.
[58]孙瑾,许青松,陈燕燕,2008.基于遗传算法和支持向量机的银行个人信用评估[J].统计与决策,(12):126-128.
[59]孙婷,2011.基于模糊综合评价法的我国信用指数构建[D].吉林大学.
[60]孙晓东,焦玥,胡劲松,2005.基于灰色关联度和理想解法的决策方法研究[J].中国管理科学,(4):63-68.
[61]孙玥璠,杨超,张梦实,2015.大数据时代中小企业信用评价指标体系重构[J].财务与会计,(6):47-48.
[62]吴晶妹,2015.从信用的内涵与构成看大数据征信[J].首都师范大学学报(社会科学版),(6):66-72.
[63]吴世农,卢贤义,2001.我国上市公司财务困境的预测模型研究[J].经济研究,(6):46-55,96.
[64]向宁,王于鹤,2016.佛教互联网舆情指数的构建与互联网舆情评估[J].世界宗教文化,(4):15-20,158.
[65]谢爱荣,田盈,袁壹,2007.多层次灰色评价法在中小企业信用评价中的应用[J].成都大学学报(自然科学版),(2):160-162.
[66]徐映梅,高一铭,2017.基于互联网大数据的CPI舆情指数构建与应用:以百度指数为例[J].数量经济技术经济研究年,(1):94-112.
[67]闫海峰,华雯君,2009.基于KMV模型的中国上市公司信用风险研究[J].产业经济研究,(3):14-22.
[68]杨莹,徐慎晖,2016.判别分析在上市公司信用风险中的实证研究[J].河南工程学院学报(社会科学版),31(4):17-19.
[69]俞庆进,张兵,2012:投资者有限关注与股票收益:以百度指数作为关注度的一项实证研究[J].金融研究,(8):152-165.
[70]喻国明,2013.大数据分析下的中国社会舆情:总体态势与结构性特征:基于百度热搜词(2009—2012)的舆情模型构建[J].中国人民大学学报,(5):2-9.
[71]喻国明,李彪,2010.2009年上半年中国舆情报告(上):基于第三代网络搜索技术的舆情研究[J].新闻传播学研究,33(1):132-138.
[72]张崇,吕本富,彭赓,等,2012.网络搜索数据与CPI的相关性研究[J].管理科学学报,15(7):50-70.
[73]张发明,杨杰,2017.大规模混合信息下的交互式群体评价方法及应用[J].系统科学与数学,37(12):2400-2411.
[74]张芳,化存才,何伟全,等,2013.采用网络舆情指数评价体系分级预警的多层模糊综合评判模型[J].重庆理工大学学报(自然科学),27(12):123-128.
[75]张玲,杨贞柿,陈收,2004.KMV模型在上市公司信用风险评价中的应用研究[J].系统工程,(11):84-89.
[76]张培凡,刘功申,2013.分级指标体系下的网络舆情指数计算[J].信息安全与通信保密,(1):57-59.