5.2.1 大地测量学与测量工程

5.2.1 大地测量学与测量工程

培养目标:培养熟悉所从事研究方向的国内外最新发展动态,在大地测量与测量工程专业领域掌握坚实的专业理论基础知识和系统的专业知识,受到独立进行科研及专门技术工作的训练,能熟练地使用计算机编程及操作相关仪器设备,能承担相关专业的教学及管理工作,具有综合运用所学理论独立解决实际技术问题的能力的高层次人才。主要研究方向如下:

物理大地测量:是大地测量学科的一个主要分支,是构成现代大地测量学科体系的重要支柱之一。其主要任务是研究地球形状、地球重力场及其随时间的变化。卫星重力探测技术的发展给物理大地测量带来了革命性的变化;空间大地测量学和物理大地测量学的结合,开创了现代大地测量学发展新阶段,使大地测量学有能力深入地球科学,在更深层次上参与解决地球科学面临的重大科学问题。精细的地球重力场模型将为测绘科学、国防与军事科学、固体地球物理学、海洋动力学等相关领域的发展提供重要的地球空间信息,在高程基准的统一、空间飞行器的精密定轨、资源勘探、灾害与环境监测等领域具有广泛的应用价值。主要研究方向包括:重力场理论与数值逼近、大地水准面确定及应用、地球自转与潮汐、参考系及参考框架、高程基准、相对论重力测量、时变重力场应用研究等。

卫星大地测量:是大地测量学中一个极为活跃的分支学科,是现代大地测量的一个重要支柱,是目前为大地测量其他分支学科提供数据的主要技术手段。其任务是研究利用卫星技术,获得距离、距离差和角度等观测值,通过数据处理,从中提取位置、速度等信息。这些信息是建立坐标系和参考框架、确定地球重力场、进行地球物理研究必不可缺的基础。除此之外,它还积极向其他学科渗透。卫星大地测量学是当代高新技术在测量中的具体体现,它的出现给大地测量,乃至其他诸多学科带来了革命性的变化。

地球物理大地测量:是现代大地测量学的延伸和拓展。地球物理大地测量研究方向是大地测量学与地球物理学的相互交融与渗透而产生的学科增长点。它利用近代空间大地测量和地球物理观测新技术,精确测定地球表面点的几何位置、地球重力场元素、地球自转轴在空间的位置和方向以及上述参数随时间的变化,并从动力学的观点研究地球动态变化的物理机制,进行地球物理解释,进而为环境变迁和海平面变化的研究、地震火山等自然灾害的孕育预测、空间飞行器精密定轨和制导,以及地下资源的勘探等提供服务。

精密工程测量:服务对象的主要特点是工程投资规模大、结构复杂、建设周期长、精度要求高,而且往往要在极端恶劣的环境下作业,因此,要求自动、实时、持续地获取数据。其发展趋势已从传统理论、仪器与方法向现代理论、自动化仪器与方法方向发展。它不仅与大地测量学、摄影测量学等学科密切相关,而且与其他相关学科,如计算机科学、自动控制、通信工程、系统工程、地质学、建筑工程等学科互相交叉和渗透,是工程测量中发展最活跃、最具有生命力的研究方向。

灾害监测与预报:变形分析理论已向整体的多源数据空间建模方向发展,灾害监测技术和方法已向多维空间模式发展,数据获取由人工、离散采集向自动化、实时连续采集方向发展。由工程引发的灾害预警,需要结合工程地质、结构力学、水文学等相关学科的信息和方法,引入数学、数字信号处理、系统科学以及非线性科学的理论来研究灾害发生的机理和早期预报的方法,为工程设计和灾害防治提供科学依据。灾害综合风险分析评估技术也是本方向研究的重要方面。

海洋测绘:是海洋测量和海图制图的总称,是综合了空间、电子、计算机、信息、化学、物理等学科的研究领域。其主要任务是对海洋及其邻近陆地和江河湖泊进行测量和调查,获取海洋基础地理信息,编制各类海图和航行资料,为航海、国防建设、海洋开发和海洋研究服务。海洋测绘的主要内容包括:海洋大地测量,水深测量,海洋工程测量,海底地形测量,障碍物探测,水文要素调查,海洋重、磁力测量,海洋专题测量和海区资料调查,以及各类海图、海图集、海洋资料的编制和出版,海洋地理信息的分析、处理和应用。

现代时空基准的建立与维持:原子频标和现代大地测量观测技术(如VLBI,LLR,SLR,GPS、DORIS)的发展,使天文观测和空间大地测量的观测精度得到迅速提高。高精度的时空基准是科学研究、科学实验和工程技术等方面的参考基准,是对地观测系统等空间科学技术的重要组成部分。该方向重点研究高精度全球性坐标框架的定义、实现和维持的可行性方案。研究在全球性坐标框架下,区域时空基准的建立、维持和精化方法。研究保持我国现代大地测量参考框架现势性的方法,研究在全球时空基准下对原有不同基准空间数据的进行转换和整合的方法。

导航定位技术:研究卫星导航系统技术体制、原理,精密测量、时空基准建立,精密时间同步、精密轨道确定与预报、完好性监测、系统运行控制、用户终端等理论、技术和方法研究,及卫星导航增强、地基无线电导航增强、辅助卫星定位系统研究等。研究利用惯性器件测量载体加速度并计算载体速度和位置的导航理论、技术与方法,主要包括:惯性导航原理、惯性器件、惯性导航算法设计、惯导系统精度和可靠性等理论、技术和方法研究等;研究卫星导航、地基无线电导航、惯性导航、地磁导航、重力导航、天文导航、影像匹配导航等组合导航系统、理论和算法。