参考文献

参考文献

[1]Abadir,K.M.and Taylor,A.M.R..On the definitions of (co-)integration [J].Journal of Time Series Analysis,1999,20: 129-137.

[2]Albano,A.M.,et al.SVD and Grassberger-Procaccia algorithm .Physical Reviews A ,1988,38 :3017-3026 .

[3]Albano,A.M..Using high-order correlations to define an embedding window [J].Physica D,1991,54(1): 85-97.

[4]Andrews,D..Note on higher order spectra [J].Ann.Inst.Statist.Math,1966,18: 123-126.

[5]Aparicio,F.M.and A.Escribano.Information-theoretic analysis of serial dependence and cointegration[J].Studies in Nonlinear Dynamics &Econometrics,1998,3: 119-140.

[6]Aparicio,F.M.,A.Escribano,and A.Garcia.Synchronicity between financial time series: an exploratory analysis.In Progress in Financial Markets Reserch(ed.C.Kystsou).New York Nova Publishers,2005.

[7]Aparicio,F.M.,A.Escribano,and A.E.Sipols.Rang Unit-Root (RUR) test:robust against nonlinearities,error distributions,structural break and outliers[J].Journal of Time Series Analysis,2006,27(4): 545-576.

[8]Ashley ,R.,D.Patterson and M.Hinich.A Diagnostic test for nonlinear serial dependence in time series fitting errors [J].Journal of Time Series Analysis1986,7: 165-178.

[9]Balk,N.S.and Fomby,T.B..Threshold cointegration[J].International Economic Review,1997,38: 627-645.

[10]Bareau,B.,Teliala,I.and Kaisa,S..Neural networks and genetic algorithms for bankruptcy predictions[J].Expert Systems With Applications1996,1(4):407-413.

[11]Barnett,W.A.and P.Chen.Deterministic chaos and fractal attractors as tools for nonparametric dynamical inferences [J].Mathematical Computing and Modelling 1988,10: 275-296.

[12]Barron,A.R..Universal approximation bounds for superpositions of a sigmoidal function[R].Technical Report 58,Department of Statistics,University of Illinis,1991.

[13]Beveridge,Stephen and C.R.Nelson.A new approach to decomposition of economic time series into permanent and transitory components with particular attention to measurement of the ‘Business Cycle ’ [J].Journal of Monetary Economics,1981,7: 151-174.

[14]Blomqivist,N..On a measure of dependence between two random variables[J].Annals of Mathematical Statistics,1950,36: 593-600.

[15]Box,G.E.P.,and G.M.Jenkins.Time series analysis,forecasting and control[M].San Fransisco: Holden Day,1970.

[16]Box,G.E.P,Cox D.R..An analysis of transformations[J].Journal of the Royal Statistical Society.Series B (Methodological),(1964) 26(2): 211-252.

[17]Breiman,L,& Friedman,J.H..Estimating optimal transformations for multiple regression and correlation[J].JASA,1985,80: 580-607 .

[18]Breitung J.and C.Gouriéroux.Rank tests for unit roots[J],Journal of Econometrics,1997,81,2-27

[19]Breitung J..Rank tests for nonlinear cointegration[J].Journal of Business and Economic Statistics,2001,19: 331-40.

[20]Brock,W.A.and E.G Baek.Some theory of statistical inference for nonlinear science [J].Review of Economic Studies,1991,58: 697-716.

[21]Broomhead,D.S.and D.Lowe.Multivariable functional interpolation and adaptive networks[J].Complex Systems,1988,2(2): 321-355.

[22]Burns,A.F.and Mitchell,W.C..Measuring business cycles[M].Columbia:Columbia University Press,1946.

[23]Buzug,P.T..Optimal delay time and embedding dimension for delay-time coordinates by analysis of the global static and local dynamical behavior of strange attractors [J].Physical Reviews A,1992,45(10):7073-7084.

[24]Buzug,P.T..Comparison of algorithms calculating optimal embedding parameters for delay time coordinates [J].Physica D,1992,58(2): 127-137.

[25]Chen Ping.Empirical and theoretical evidence of monetary chaos[J].System Dynamics Review,1988,4: 81-108.

[26]Davidson,J.E.H.,Hendry ,D.F.,Srba,F.,and S.Yeo.Econometric modeling of the aggregate time series relationships between Consumer’s Expenditure and Income in the United Kingdom[J].Economic Journal,1978,88:661-692.

[27]Day,R.H..Irregular growth cycles[J].American Economic Review,1982,72:406-414.

[28]Day,R.H..The emergence of chaos from classical economic growth[J].Quarterly Journal of Economics,1983,5: 201-213.

[29]Cover J.P..Asymmetric effects of positive and negative money supply shocks[J].Quarterly Journal of Economics ,1992,107(4): 1261-1281.

[30]Cox,D.D..A symptotics for M-type smoothing splines[J].Annals of Statistics,1983,11: 530-551.

[31]Cutler,C..Some results on the behavior and estimation of the fractal dimensions of distributions on attractors [J].Journal of Statistical Physics,1991,62: 651-708.

[32]Cybenko,G..Approximation by superpositions of a sigmoidal function[J].Mathematics of Control,Signals and Systems,1989,2: 303-314.

[33]Denker,G.and K.G.eller.Rigorous statistical procedure for data from dynamical systems[J].Journal of Statistical Physics,1986,44: 67-93.

[34]Dornbusch,R..Expectation and exchange rate dynamics[J].Journal of Political Economy,1976,84: 1161-76.

[35]Dufrénot,G.,Mathieu,L.and V.Mignon.Pourquoi les taux de change d’équilibre deveintils de leur valuer fundamentals? Une analyse par la cointégration non-linéaire[C].Communication at the International Congress on Reconstruire l’architecture du systeme monétaire international,Sienna,Italy,2000.

[36]Dufrénot,G.,Valérie Mignon.Recent developments in nonlinear cointegration with applications to macroeconomics and finance[M].Kluwer Academic Publishers,2002.

[37]Dumas,B..Dynamic equilibrium and the real exchange rate in a spatially separated world[J].Review of Financial Studies,1992,2: 153-180.

[38]Duolao Wang and Michae.Murphy estimating optimal transformations for multiple regression using the ACE algorithm[J].Journal of Data Science,2004,2: 329-346.

[39]Efron Bradley.Bootstrap methods: another look at the jackknife [J].The Annals of Statistics,1979,7(1): 1-26.

[40]Ehud,D.Karninl.A simple procedure for pruning back-propagation trained neural network[J].IEEE Trans on Neural Networks,1990,1(2): 239-242.

[41]Embrechts,P.,C.Klüppelberg and T.Mikösch.Modeling extremal events(for insurance and finance)[M].Springer-Werlag,Heidelberg,1999.

[42]Engle,R.F.and C.W.J.Granger.Cointegration and error correction:represention,estimation and testing.Econometrics,1987,55: 251-276.

[43]Erdogan,S.S.,Geok-See.Ng and P.K.-H.Chan.Measurement criteria for neural network pruning[C].IEEE Region 10 Annual Conference,1996: 83-89.

[44]Escribano A.,A.E.Sipols and F.M.Aparicio.Nonlinear cointegration and nonlinear error correction: record counting cointegration tests.communications in Statistics[J].simulation and Computation,2006,35(4): 939-956.

[45]Fahlman,S.E.and C.Lebiere.The cascade-correlation learning architecture[J].Advances in Neural Information Processing Systems,1990,2: 524-532.

[46]Fama,E..The behavior of stock market prices[J].Journal of Business,1965,38: 34-106.

[47]Feigenbaum,M.J..Quantitative universality for a class of nonlinear transformations[J].Journal of Statistical Physics,1978,19: 25-52.

[48]Feigenbaum,M.J..The onset spectrum of turbulence[J].Physical Letters A,1979,74: 375.

[49]Feigenbaum,M.J..The transition to aperiodic behaviour in turbulent systems [J].Commun.Math.Physics,1980,77: 65.

[50]Fraser,A.M..Information and entropy in strange attractors[J].IEEE Trans on IT Mar,1989,35(2): 245-262.

[51]Friedman,M.Money and the stock market[J].Journal of Political Economy,1988,96(2): 221-245.

[52]Gilmore,C.G..A new test for chaos [J].Journal of Economic Behavior and Organization,1993,22: 219-237.

[53]Goldberg,D.E..Genetic algorithms: in search optimization & machine learning[M].Massachusetts,USA: Addison-wesley Publishing Company,1989.

[54]Granger,C.W.J.Some properties of time series data and their use in econometric model specification[J].Journal of Econometrics,1981,23:121-130.

[55]Granger,C.W.J.and Weiss,A.A.Time series analysis of error-correction models,in: Studies in Econometrics,Time Series,and Multivariate Analysis(Academic Press,New York): 1983,255-278.

[56]Granger,C.W.J.Developments in the Study of cointegrated economic variables[J].Oxford Bulletin of Economics and Statistics,1986,48: 213-228.

[57]Granger C W J,Hallman J.Long memory series w ith attractors.Oxford Bulletin of Economics and Statistics,1991,53 (1): 11-26.

[58]Granger,C.W.J..Modelling nonlinear relationships between extendedmemory variables[J].Economica,1995,63: 265-279.

[59]Granger,C.W.J and Namwon Hyung.Occasional structural breaks and long memory with an application to the S&P 500 absolute stock returns[J].Journal of Empirical Finance,2004,11: 399-421.

[60]Grassberger,P.and I.Procaccia.Estimation of the Kolmogorov entropy from a chaotic signal[J].Physical Reviews A,1983,28: 2591-2593.

[61]Grassberger,P.and I.Procaccia.Measuring the strangeness of strange atrractors [J].Physica 9D: 1983,189-208.

[62]Halsty,T.C.,M.H.Jensen and L.P.Kadanoff.Fractal measures and their singularities : the characterization of strange sets[J].Physical Reviews,1986,A 33: 1141.

[63]Hamilton,&James D.Time Series Analysis[M].Pricnceton: Princeton University Press,1994.

[64]Hannan,E.J..The estimation of the order of an ARMA process[J].Annals of Statistics,1982,8:1071-1081.

[65]Hansen and E.Bruce.Efficient estimation and testing of cointegrating vectors in the presence of deterministic Trends[J].Journal of Econometrics,1992,53: 87-121.

[66]Härdle,W.,Lütkepohl,H.and Chen,R..A review of nonparametric time series analysis[J].International Statistical Review,1997,65: 49-72.

[67]Masry,E.and Fan,J..Local polynomial estimation of regression functions for mixing processes[J].Scandinavian Journal of Statistics,1997,24: 165-179.

[68]Hendry,D.F.,and G.E.Mizon.Serial correlation as a convenient simplification not a nuisance: a comment on a study of the demand for money by the bank of england[J].Economic Journal,1978,88: 549-563.

[69]Hesieh,D..Testing for nonlinear dependence in daily foreign exchange rates[J].Journal of Business,1989,62(3): 339-359.

[70]Hinich,M.J..Testing for gaussianity and linearity of a stationary time series[J].Journal of Time Series Analysis,1982,3: 169-176.

[71]Holger Kantz,and Thomas Schreiber.Nonlinear time series analysis[M](影印版).北京:清华大学出版社,2000.

[72]Holland,J.H..Adaptationin natural and artificial systems[M].Boston,USA:MIT Press,1975.

[73]Hornik,K.,Stinchcombe,M.and H.White.Multi-layer feedforward networks are universal appromiximators[J].Neural Networks 1989,2: 359-366.

[74]Hurst,H..Long term storage capacity of reservoirs [J].Transactions of the American Society of Civil Engineers,1951,116:770-799.

[75]Johansen,S..Statistic analysis of cointegration vectors[J].Journal of Economic Dynamics and Control,1988,12: 231-254.

[76]Johansen ,S..Estimation and hypothesis testing of cointegration vectors in gaussian vector autoregressive models[J].Econometrics,1991,59(6): 1551-1580.

[77]Kah Phooi Seng,Zhihong Man,Hong Ren Wu..Lyapunov-theory-based radial basis function networks for adaptive filtering[J].IEEE Transactions on Circuits and Systems,2002,49(8): 1215-1220.

[78]Kantz,H..A robust method to estimate the maximal lyapunov exponent of a time series[J].Physics letters.A,1994,185: 11,77-87.

[79]Kantz,H.and T.Schreiber.Nonlinear time series analysis[M].Cambridge:Cambridge Univ.Press,1997.

[80]Karras,G..Are the output effects of monetary policy asymmetric? Evidence from a sample of european countries[J].Oxford Bulletin of Economics and Statistics ,1996,58: 267-278.

[81]Karras,G.and H.Stokes.Are the output effects of money-supply shock asymmetric? Evidence from prices,consumption and investment[J],Journal of Macroeconomics,1999,21: 713-728.

[82]Keenman,D.M..A turkey non-additivity-type test for time series nonlinearity[J].Biometrika,1985,72:39-44.

[83]Kember,G.,and A.C.Fowler.A correlation function for choosing time delays in phase portrait reconstructions [J].Physical Letters A,1993,179(2):72-80.

[84]Keynes,J.M..The general theory of employment,interest and money[M].London: Macmillan Cambridge University Press,1936.

[85]Kim,H.S.,R.J.Eykholt and D.Salas.Nonlinear dynamics,delay times,and embedding windows [J].Physica D 1999,127 (1): 48-60.

[86]Kodres L.E.,Papell D.H..Nonlinear dynamics in foreign exchange futures market[R].Working paper,Universtiy of Michigan,1991.

[87]Kuan,C.M.and H.White.Predicting appliance ownership using logit,nueral networks and regression tree models[R].BEBR Working Paper,1990,90-1647.

[88]Kuan,C.M.and T.Liu.Forcasting exchange rate using feedforward and recurrent nueral networks[J].Journal of Applied Econometrics 1995,10:347-364.

[89]Kugiumtzis,D..State space reconstruction parameters in the analysis of chaotic time series-the role of the time window length [J].Physica D,1996,95(1): 13-28.

[90]Kwiathowski,D.and P.C.B.Phillips,P.Schmidt and Y.Shin.Testing the null hypothesis of stationarity against the alternative of a unit root: How sure are we that economictime series have a unit root? [J].Journal of Econometrics,1992,54: 159-178.

[91]Kyung-Joong Kim,Sung-Bae Cho.Evolutionary ensemble of diverse artificial neural networks using speciation[J].Neurocomputing,2008,71:1604-1618.

[92]Lee,D.and P.Schmidt.On the power of the KPSS test of stationarity against fractionally-integrated alternatives[J].Journal of Econometrics,1996,73: 285-302.

[93]Lee,T,-H.,H.White and C.W.J Granger.Testing for neglected nonlinearity in time series models: a comparison of neural network methods and alternative tests[J].Journal of Econometrics,1993,56: 269-290.

[94]Lei Xu.Rival penalized competitive learning for clustering analysis,RBF Net,And Curve Detection[J].IEEE Transaction on Neura1 Networks,1993,4(4):636-649.

[95]Lindgren,G.and H.Rootzén.Extremal values: theory and technical applications[J].Scandinavian Journal of Statistics,1987,14: 241-279.

[96]Liu,T.,C.W.J Granger and W.Heller.Using the correlation exponent to decide if an economic series is chaotic[J].Journal of Applied Econometrics,1992,7S: 525-540.

[97]Lo,A.W..Long-Term memory in stock market prices [J].Econometrics 1991,59: 1279-1313.

[98]Mandelbrot,B.B.,and M.Taqqu.Robust R/S analysis of long run serial correlation .Bulletin of International Statistical Institute,1979,48,Book 3:59-104.

[99]Mankiw,G.N.The reincarnation of Keynesian economics[J].NBER Working Paper No,1991,3885.

[100]Mantalos,P..A graphical investigation of the size and power of the grange-causality tests in integrated-cointegrated VAR systems[J],Studies in Non-linear Dynamics and Econometrics,2000,4: 17-33·

[101]Martin T.Hagan,Howard B.Demuth and Mark H.Beale著.神经网络设计[M].戴葵等译.北京:机械工业出版社,2002.

[102]Mitchell,W.C..Business cycles: the problem and its setting[M].New York:National Bureau of Economic Research,1927.

[103]Mcleod,A.I.and W.K.Li.Diagnostic checking ARMA time series models using squared residual autocorrelations [J].Journal of Time Series Analysis,1983,4: 169-176.

[104]Moody,J.and C.Darken.Learning with localized receptive fields[C].In Sejnowski T,Touretzky D,Hinton G,editors,Connectionist Models Summer School,Carnegie Mellon University,1988.

[105]Moody,J..Prediction risk and architecture selection for neural networks[C].Statistics to Neural Networks:Theory and Pattern Recognition Applications,NATO ASI Series F.New York: 1994,178-197.

[106]Mundell,R.A.Capital mobility and stabilization policy under fixed and flexible exchange rates[J],Canadian Journal of Economics and Political Science,1963,29,475-85.

[107]Neftci,S.N..Are economic time series asymmetric over the business cycles?[J].Journal of Political Economy,1984,92:307-328.

[108]Packard,N.H.,J.P.Crutchfield and J .D.Farmer,et al..Geometry from a time series [J].Physical Review Letter,1980,45(3):712-716.

[109]Parzen,E..On estimation of a probability density function and mode [J].Annual Math Statistics,1962,33:1065-1076.

[110]Peters,E.E.Chaos and order in the capital markets-a new view of cycles,prices and market volatility[M].New York: John Wiley&Sons,Inc.1991.

[111]Peters E.E..Fractal market analysis: applying chaos theory to investment and economics[M].New York: John Wiley & son Inc,1994.

[112]Peters E.E..Chaos and order in the capital market[M].Second Ed: New York: John Wiley& Sons press,1996.

[113]Philippatos,G.C.,Pilarinu,E.and Malliaris,A.G..Chaotic behavior in prices of european equity markets: a comparative analysis of major economic regions[J].Journal of Multinational Finance Management,1994,3: 5-24.

[114]Ramsey,J.B.Tests for specification errors in classical linear least squares regression analysis[J].Journal of the Royal Statistical Society B,1969,31:350-371.

[115]Ramsey,J.and H.Yuan.Bias and error bias in dimension calculation and their evaluation in some simple models [J].Physical Letters A,1989,134:287-297.

[116]Richards,G.R..The fractal structure of exchange rates: measurement and forecasting[J].Journal of International Financial Markets,Institutions and Money,2000,10: 163-180.

[117]Rosenstein M.T.,J.J.Collins and L.C.De,A practical method for calculating largest lyapunov exponents from small data sets [J].Physica D,1993,65: 117-134.

[118]Rosenstein,M.T.,J.J.Collins and C.J.De Luca.Reconstruction expansion as a geometry-based framework for choosing proper delay times [J].Physica D,1994,73(1): 82-98.

[119]Ruppert D,M.P.Wand..Multivariate locally weighted least squares regression[J].Annals of Statistics,1994,22: 1346-1370.

[120]Sato,S.,M.Sano,and Y.Sawada.Practical methods of measuring the generalized dimension and the largest lyapunov exponent in high dimensional chaotic systems [J].Progress of Theoretical Physics,1987,77:1-5.

[121]Scheinkman,J.and B.Lebanon.Nonlinear dynamics and stock returns[J].Journal of Business,1989,62: 311-337.

[122]Schmidt,P.and P.C.B.Phillips.LM test for a unit root in the presence of deterministic trends[J].Oxford Bulletin of Economics and Statistics,1992,54,257-287.

[123]Sercu,P.,Uppal,R.and C.Van Hulle.The exchange rate in the presence of transaction costs: implications for tests of purchasing power parity[J].Journal of Finance,1995,50: 1309-1319.

[124]Smith,R.L..Estimating dimension in noisy chaotic time series [J].Journal of Royal Statistical Society B,1992,54: 329-352.

[125]Sowell,F.B..The fractional unit root distribution[J].Economics,1990,58:495-505.

[126]Srinivas,M.and L.M.Patnaik.Genetic search: analysis using fitness moments[J].IEEE Transactions on Knowledge and Data Engineering,1996,8(1): 120-133.

[127]Stutzer,M,J..Chaotic dynamics and bifurcations in a macro model[J].Journal of Economic Dynamics and Control,1980,4(3): 353-376.

[128]Taqqu,M.S.,V.Teverosky and W.Willinger.Estimations for long-range dependence: an empirical study[J].Fractals,1995,3(4): 765-788.

[129]Takens,F..Detecting strange attractor in turbulence.in Dynamical systems and turbulence,Warwich,1980,Lecture Notes in Mathe-matics,Rand and Young eds,1981,898: 366-381.

[130]Tjøstheim,D..Non-linear time series: a selective review[J].Scandinavian Journal of Statistics,1994,21:97-130.

[131]Tong,H..Non-linear time series: a dynamical systems approach[M].Oxford: Oxford University Press,1990.

[132]Tong,H..A personal overview of non-linear time series analysis from a chaos perspective(with discussion)[J].Scandinavian Journal of Statistics,1995,22: 399-445.

[133]Tsay,R.S..Nonlinearity test for time series [J].Biometrika 1986,73:461-466.

[134]Tsay,R S..Analysis of Finacial Times Series[M].John Wiley &Sons,press,New York: 2002.

[135]Vance L.Martin and Kim Sawyer.Statistic techniques for modeling nonlinearities.In John Creedy ,Vance L.Martin(ed.),Chaos and nonlinear models in economics: theory and applications.Edward Elgar Publishing Company: 1994,113-134.

[136]White,H..Economic prediction using nueral networks: the case of IBM stock prices[C].Proceedings of the IEEE Second International Conference on Neural Networks,1988,2: 451-458.

[137]White,H..Some asymptotic results for learning in single hidden-layer feedforward network models[J].Journal of the American Statistical Association,1989,84: 1003-1013.

[138]Wolf A.,J.B.Swift ,H.L.Swinney and J.A.Vastano.Determining lyapunov exponents from a time series [J].Physica D,1985,16: 285-317.

[139]Xiao-Ming Li..A revisit of international stock market linkages: new evidence from rank tests for nonlinear cointegration[J].Scottish Journal of Political Economy,2006,2: 174-197.

[140]Yao,Q.and Tong,H..On initial-condition sensitivity and prediction in nonlinear stochastic systems[J].Bull.Int.Statist.Inst.1995a,50:395-412.

[141]Yao,Q.and Tong,H..On prediction and chaos in stochastic systems[J].Philosophical transactions A: mathematical,physical and engineering sciences,348 1995b,(1688): 357-369.

[142]Yule,G.U..On a method of investigating periodicities in disturbed series,with special reference to wolfer’s Sunsport Numbers[J].Philosophical Transactions1927,226A: 267-298.

[143]Zhang Qinghua,Benveniste,A..Wavelet networks[J].IEEE Transactions on Neural Networks 1992,3(6):888-898.

[144]陈守东,韩广哲,荆伟.主要股票市场指数与我国股票市场指数间的协整分析[J].数量经济技术经济研究,2003(5):124-129.

[145]陈小平,赵鹤鸣,杨新艳.遗传前馈神经网络在函数逼近中的应用[J].计算机工程,2008,34(20)24-28.

[146]储海林,吕小宁,李哲.分形与统计学[J].统计研究,2004(2):35-37.

[147]郑湄,苗佳.应用协整检验对中国股市及美、英股市联动关系的分析[J].山东社会科学,2004(12):113-115.

[148]范剑青,姚琦伟著.陈敏译.非线性时间序列-建模,预报及应用[M].北京:高等教育出版社,2005.

[149]韩非,肖辉.中美股市间的联动性分析[J],金融研究,2005(11):117-129

[150]黄忠明,吴志红,刘全喜.几种用于非线性函数逼近的神经网络方法研究[J].兵工自动化.2009,28(10):88-92.

[151]黄建国,罗航,王厚军,龙兵.运用GA-BP神经网络研究时间序列的预测[J].电子科技大学学报,2009,38(5):687-692.

[152]冯今朝,王仲生.基于LM优化算法的神经网络在航空发动机转子故障诊断中的应用[J].宇航计测技术,2007,27(2):18-21,49.

[153]梁勇,孟桥,陆佶人.Lyapunov指数的算法改进与加权预测[J].声学技术,2006,(05):463-467.

[154]雷钦礼.非线性协整模型:理论与方法[J].统计研究,2009(3):81-91.

[155]林文夫著,冉启康,朱保华译.计量经济学.上海财经济大学,2005.10.

[156]林嘉宇,王跃科,黄芝平,等.语音信号相空间重构中时间延迟的选择---复自相关法[J].信号处理,1999,15(3):220-225.

[157]罗伯特S.平狄克&丹尼尔L.鲁宾费尔德著.计量经济模型与经济预测(4版)钱小平等译.北京:机械工业出版社1999.11.

[158]刘汉中,傅元海.基于残差的非对称单位根自助法检验研究[J].数量经济技术经济研究,2008(8):151-160.

[159]李春鑫,李天伟,王孝通.基于小波模糊网络的非线性函数逼近方法的研究[J].计算机测量与控制,2006,14(3):322-323,338.

[160]李明国,郁文贤.神经网络的函数逼近理论[J].国防科技大学学报,1998,20(4):70-76.

[161]李洋.小波过程神经网络相关理论及其应用研究[D].博士论文.哈尔滨工业大学,2008.

[162]李美洲.门限及分数维分析及其在经济中的应用[D].博士论文.暨南大学,2008.

[163]李选举.Box-Cox变换及其在MathCAD上的实现[J].数量经济技术经济研究,2000,4:42-44.

[164]乔俊飞,张颖.一种多层前馈神经网络的快速修剪算法[J].智能系统学报.2008,3(2):173-176.

[165]活尔特.恩德斯(Walter Enders)著.应用计量经济学:时间序列分析[M].杜江 谢志超译.(第2版)高等教育出版社.2006.6.

[166]L.沃塞曼[美]著.现代非参数统计[M].吴喜之译.北京:科学出版社,2008.

[167]王国松,杨扬.国际资本流动下我国货币需求函数稳定性检验[J].财经研究,2006(10):17-25.

[168]王少平.单位根和协整及其结构突变的理论与应用研究(清华大学博士论文)2002.

[169]王忠玉.混沌的计量经济学简评[J].统计研究,2000(2):61.

[170]王春玲.基于径向基函数网络的非线性系统自适应逆控制[D].硕士论文,山东大学,2007.

[171]施锡铨,艾克凤.股票市场风险的多重分形分形[J].统计研究,2004(9):33-36.

[172]石建民.股票市场、货币需求与总量经济:一般均衡分析[J].经济研究,2001(5):45-52.

[173]舒晓惠,雷钦礼,宋金奇.单位根的秩检验及其应用研究[J].统计研究,2009(9):101-107.

[174]舒晓惠,雷钦礼,陈一非.中国与国际股市的协整分析——基于一种新的非线性协整秩检验方法[J].山西财经大学学报,2010(1):17-29.

[175]孙青华,张世英.长记忆向量时间序列的非线性协整关系研究[J].天津大学学报,2002, 35(3):327-331.

[176]田旭光,宋彤,刘宇新.结合遗传算法优化BP神经网络的结构和参数[J].计算机应用与软件,2004,21(6):69-71.

[177]谢益辉,朱钰.Bootstrap方法的历史发展和前沿研究[J].统计与信息论坛,2008(2):90-96.

[178]杨庆,秦伟良.R/S和修正R/S方法的实证分析[J].统计与决策,2003(11):18-19.

[179]杨建刚.人工神经网络实用教程[M].杭州:浙江大学出版社,2001.

[180]杨国为,王守觉,闫庆旭.分式线性神经网络及其非线性逼近能力研究[J].计算机学报,2007,30(2):189-199.

[181]叶阿忠.非参数经济学[M].天津:南开大学出版社,2003.7.

[182]叶阿忠.非线性协整的非参数检验方法[J].预测,2001(1):79-80.

[183]易行健.关于中国股票市场对货币需求总量与结构影响的分析[J],经济科学,2004

[184]易行健.经济开放条件下的货币需求函数:中国的经验[J],世界经济,2006(4):49-59.

[185]俞世典,陈守东,黄立华.主要股票指数的联动分析[J].统计研究,2001(8):42-46.

[186]张世英 樊智.协整理论与波动模型.北京:清华大学出版社.2004.

[187]张贤达(1996).时间序列分析-高阶统计量方法[M].北京:清华大学出版社:31-45.

[188]张丹,于朝民,付永杰.基于人工神经网络的传感器非线性拟合方法的研究[J].工业计量.2004,14(5):31-33.

[189]张喜彬,张世英.关于单整时间序列非线性变换的研究[J].系统工程学报,1998,13(2):70-77.

[190]张昭昭,沈学利,乔俊飞.基于权值e指数信息熵的前馈网络修剪算法[J].辽宁工程技术大学学报(自然科学版),2009,28(3):439-441.

[191]钟登华.非线性随机最佳变换模型及其应用[J].系统工程学报,1996,11(3):84-89.

[192]赵贵兵,石炎福,段文锋,余华瑞.从混沌时间序列同时计算关联维和Kolmogorov熵[J].计算物理,1999,15(3):309-315.

[193]张尧庭.关于度量变量之间的相关程度[J].上海财经大学学报,1999(12):60-63.

[194]周建(2005).时间序列建模中滞后阶数选取准则函数的检测效力及其特征[J].系统工程理论与实践,2005(11):20-27.

[195]中国人民银行研究局课题组,中国股票市场发展与货币政策完善[J],金融研究,2002(4):1-12.