参考文献
第1章参考文献
[1]白春华,梁慧敏,李建平,等.云雾爆轰[M].北京:科学出版社,2012.
[2]张博,白春华.气相爆轰动力学[M].北京:科学出版社.2013.
[3]王世英.二次起爆云爆战斗部的发展趋势[C]//OSEC首届兵器工程大会论文集.2017.
[4]恽寿榕,赵衡阳.爆炸力学[M].北京:国防工业出版社,2005.
[5]吴力力,丁玉奎,甄建伟.云爆弹关键技术发展及战场运用[J].飞航导弹,2016(12).
[6]张宝平,张庆明,黄凤雷.爆轰物理学[M].北京:兵器工业出版社,2001.
[7]章艳.云爆引信云雾扩散浓度双频超声实时探测技术[D].北京:北京理工大学,2020.
[8]郭明儒.云爆浓度快速多模检测机理与方法研究[D].北京:北京理工大学,2016.
[9]Zeldovich Y B.On the theory of the propagation of detonation in gaseous systems[J].Technical Report Archive & Image Library,1940.
[10]Moen I O.Transition to detonation in fuel-air explosive clouds[J].Journal of Hazardous Materials,1993,33(2):159-192.
[11]A C van den Berg and A.Lannoyb.Methods for vapour cloud explosion blast modelling[J].Journal of Hazardous Materials,1993,34(2):151-171.
[12]Carlson G A.Fuel-air munition and device[P].US-US3955509 A,1976.
[13]Gardner D R.Near-field dispersal modeling for liquid fuel-air explosives[M].Sandia National Labs,Albuquerque,NM,1990(7):83.
[14]Gabrijel Z,Nicholls J A.Cylindrical heterogeneous detonation waves[J].Acta Astronautica,1978,5(11-12):1051-1061.
[15]Method of generating single-event,unconfined fuel-air detonation[P].Sayles D C,US4463680,1984.
[16]Gelled Fuel-Air Explosive Method[P].Stull B O.US4293314.1981
[17]Sedgwick R T,Kratz H R.Fuel Air Explosives:A Parametric Investigation[P].US,1979.
[18]Lavoie L.Fuel-air explosives,wapens,and effect[sJ].Military Technology,1989,(9):35-41.
[19]Sedgwick R T.Fuel air explosive:a parametric investigation[J].AD-A159177,1985(18).
[20]Stanley E W.Gelled FAE Fuel[P].US430220,1981.
[21]Bertram O.Gelled fuel-air explosive method[P].US4293314,1981.
[22]Rosenblatt M.Remarks on a Multivariate Transformation[J].Annals of Mathematical Statistics,1952,23(3):470-472.
[23]Bagduev R I,Balkanov V A,Belolaptikov I A,et al.The optical module of the Baikal Deep underwater neutrino telescope[J].Nuclear Instruments & Methods in Physics Research,1998,420(1-2):138-154.
[24]Borisov A A.Modeling pressure waves formed by the detonation and combustion of gas mixtures[J].Combustion Explosive and Shock Waves,1985,21(2):211-217.
[25]Gardner D R,Trogdon S A,Douglass R W.A modified tau spectral method that eliminates spurious eigenvalue s[J].Journal of Computational Physics,1989,80(1):137-167.
[26]薛社生,刘家骢,等.燃料爆炸抛撒成雾的实验与数值研究[J].爆炸与冲击,21(4):272-276.
[27]任晓冰,陆晓霞,等.爆炸驱动液体分散的实验与数值模拟研究[J].兵工学报,2010,31(S1):93-97.
[28]李磊,崔箭,等.液体爆炸分散过程中界面破碎的实验研究[J].科学通报(12):57-64.
[29]丁珏,刘家骢.液体燃料云团形成过程的数值仿真[J].兵工学报,2001,22(14):48l-484.
[30]惠君明.FAE燃料抛撒与云雾状态的控制[J].火炸药学报,1999,22(1):10-13.
[31]张奇,覃彬,白春华,等.中心装药对FAE燃料成雾特性影响的试验分析[J].含能材料,2007;15(5):448-450.
[32]肖绍清,白春华,等.FAE云雾控制因素的优化研究[J].火炸药学报,1999,18(2):11-14.
[33]石艺娜,洪滔,秦承森.气溶胶抛撒过程中首次破碎液滴的尺寸分布[J].计算物理,2010,27(6):847-853.
[34]王仲琦,陈翰,刘意,等.炸药驱动惰性颗粒运动过程数值模拟研究[J].兵工学报.2010,31(1):112-127.
[35]罗艾民,张奇,李建平.爆炸驱动作用下固体燃料分散过程的计算分析[J].北京理工大学学报,2005,25(2):103-107.
[36]张博,李斌,沈正祥,等.激波与固体颗粒群相互作用实验研究[J].实验流体力学,2009,23(3):16-19.
[37]李斌,解立峰,等.激波驱动下固体颗粒抛撒的实验研究[J].实验力学,2012,27(6):715-720.
[38]王凯,黄寅生,等.爆炸装置结构对固体粉末抛撒半径的影响[J].安全与环境学报,2011,11(5):154-157.
[39]刘意,王仲琦,等.颗粒特征尺寸对爆炸驱动惰性金属颗粒运动的影响[J].科技导报,2009,27(22):48-53.
[40]许学忠,裴明敬,王宇辉,等.一次起爆FAE的燃料扩散特征[J].火炸药学报,2000(1):47-49.
[41]张奇,白春华,刘庆明,等.壳体对燃料近区抛撒速度的影响[J].应用力学学报,2000,17(3):102-107.
[42]郭学永,惠君明.装置参数对FAE云雾状态的影响[J].含能材料,2002,10(4):161-165.
[43]Dobbins R A,Crocco L,Glassmans I.Measurement of mean particle sizes of sprays from diffractively scattered light[J].AIAA Journal,1963,1(8):1882-1886.
[44]Samirant M,Smeets G,Baras C,et al.Dynamic measurements in combustible and detonable aerosols.Propellants,Explosives[J],Pyrotechnics,1989,14(2):47-56.
[45]Labbe J,Bardon M F,Sellens R W.Diode laser for in situ transient measurements in explosively formed aerosol clouds[J].Review of Scientific Instruments,1992,63(4):2170-2173.
[46]Klippel A,Schmidt M,Muecke O,et al.Dust concentration measurements during filling of a silo and CFD modeling of filling processes regarding exceeding the lower explosion limit[J].Journal of Loss Prevention in the Process Industries,2014(29):122-137.
[47]Hauert F,Vogl A,Radandt S.Dust cloud characterization and the influence on the pressure time history in silos[J].Proc.Safe.Progr,1996(15):1-8.
[48]Liu X,Zhang Q.Influence of turbulent flow on the explosion parameters of micro-and nano-aluminum powder-air mixtures[J].Journal of hazardous materials,2015(299):603-617.
[49]Rani S I,Aziz B A,Gimbun J.Analysis of dust distribution in silo during axial filling using computational fluid dynamics:Assessment on dust explosion likelihood[J].Process Safety and Environmental Protection,2015(96):14-21.
[50]Spida M,Sievic V,Jahoda M,et al.Solid Particle distribution of moderately concentrated suspensions in a pilot plant stirred vessel[J].Chemical Engineering Journal,2005,113(1):73-82.
[51]Yamazaki H,Tojo K,Miyanami K.Concentration Profiles of Solids Suspended in a Stirred Tank[J].Powder Technology,1986,48(3):205-216.
[52]Omotayo Kalejaiye,Paul R.Amyotte,Michael J.Pegg,et al.Cashdollar Effectiveness of dust dispersion in the 20-L Siwek chamber[J].Journal of Loss Prevention in the Process Industries,2010(23):46-59.
[53]Esmail R.Monazam,Rupen Panday,Lawrence J.Shadle.Estimate of solid flow rate from pressure measurement in circulating fluidized bed[J].Powder Technology,2010,203(1).
[54]Juliusz B.Gajewski.Non-contact electrostatic flow probes for measuring the flow rate and charge in the two-phase gas-solids flows[J].Chemical Engineering Science,2005,61(7).
[55]田贻丽.粉尘浓度测量方法的研究[D].重庆:重庆大学,2003.
[56]胡澄.基于MIE散射理论的粉尘浓度测量研究[D].苏州:苏州大学,2007.
[57]赵政.基于电荷感应法的金属粉尘浓度检测技术[J].煤炭科学技术,2017,45(12):155-159.
[58]张国城,沈正生,等.微电荷法在线粉尘仪原理及其计量检测[J].计量技术,2017,511(3):41-45.
[59]Allegra J R,Hawley S A,Holton G.Attenuation of Sound in Suspensions and Emulsions:Theory and Experiment[sJ].Optics,1970,51(1A):1545-1564.
[60]Chang J S,Ichikawa Y,Irons G A,et al.Void fraction measurement by an ultrasonic transmission technique in bubbly gas-liquid two-phase flow[C]//Measuring Techniques in Gas-Liquid Two-Phase Flows.Springer Berlin Heidelberg,1984:319-335.
[61]Falcone G.Chapter 3 Multiphase Flow Metering Principles[J].Developments in Petroleum Science,2009,54(9):33-45.
[62]Figueiredo M M F,Goncalves J L,Nakashima A M V,et al.The use of an ultrasonic technique and neural networks for identification of the flow pattern and measurement of the gas volume fraction in multiphase flows[J].Experimental Thermal and Fluid Science,2016(70):29-50.
[63]唐娟.粉尘浓度在线监测技术现状及发展趋势[J].矿业安全与环保,2009,36(5):69-71.
[64]杜利利,谭利民,等.作业场所粉尘危害现状调查[J].职业卫生与病伤,2013(3):129-132.
第2章参考文献
[1]A t d,A m l,A a d,et al.Automatic ultrasonic inspection for internal defect detection in composite materials-ScienceDirect[J].NDT & E International,2008,41(2):145-154.
[2]Zabelka R J,Smith L H.Explosively Dispersed Liquids[R].AD-863268,1969.
[3]Borisov A A.Research on the Explosive Dispersion of FAE[R].Report in NUST,1995.
[4]Popoff I G,Thuman W U.Research Study on the Dissemination of Solid Liquid[R].Agent Final Report,1980.
[5]Borisov A A.Research on the Explosive Dispersion of FAE[R].Report in NUST,1995.
[6]Ivandaev A I.Numerical Investigation of Expansion of a Cloud of Dispersion Particles or Drops under the Influence of an Explosion[J].Fluid Dynamics,1982,17:68-74.
[7]Ivandaev A I.Numerical Investigation of Expansion of a Cloud of Dispersion Particles or Drops under the Influence of an Explosion[J].Fluid Dynamics,1982,17:68-74.
[8]Glass M W.Far Field Dispersal Modeling for Liquid Fuel Air Explosive[R].SAND 900687,1991.
[9]Gardner D R.Near Field Dispersal Modeling for Liquid Fuel Air Explosives[R].SAND 900686,1990.
[10]Spidla M,Sinevič V,Jahoda M,et al.Solid particle distribution of moderately concentrated suspensions in a pilot plant stirred vessel[J].Chemical Engineering Journal,2005,113(1):73-82.
[11]Gregoire Y,Frost D,Petel O.Development of instabilities in explosively dispersed particle[sJ].AIP Conference Proceedings,2012(23):1623-1626.
[12]Grégoire Y,Sturtzer M O,Khasainov B A,et al.Cinematographic investigations of the explosively driven dispersion and ignition of solid particles[J].Shock Waves,2014(24):393-402.
[13]Charles M J,Robert C R,Wu C Y,et al.Explosively driven particle fields imaged using a high speed framing camera and particle image velocimetry[J].International Journal of Multiphase Flow,2013(51):73-86.
[14]张奇,白春华,等.燃料抛撒过程中的相似律[J].北京理工大学学报,2000,20(5):651-655.
[15]罗艾民,张奇,李建平,等.爆炸驱动作用下固体燃料分散过程的计算分析[J].北京理工大学学报,2005,25(2):103-107.
[16]蒲加顺,白春华,梁慧敏.多元混合燃烧分散爆轰研究[J].火炸药学报,1998,21(l):l-5.
[17]郭明儒.云爆浓度快速多模检测机理与方法研究[D].北京:北京理工大学,2016.
[18]薛社生.燃料空气炸药的爆炸抛撒研究[D].南京:南京理工大学,1997.
[19]惠君明,FAE燃料抛撒与云雾状态的控制[J].火炸药学报,1999,22(1):10-13.
[21]Song Y,Nassim B,Qi Z.Explosion energy of methane/deposited coal dust and inert effects of rock dust[J].Fuel,2018,228:112-122.
[22]Xiang G D,Sun H L,Zhao L S,et al.The antioxidant alpha-lipoic acid improves endothelial dysfunction in duced by acute hyperglycaemia during OGTT in impaired glucose tolerance[J].Clinical Endocrinology,2010,68(5):716-723.
[23]蒋丽,白春华,刘庆明.气、固、液三相混合物燃烧转爆轰过程实验研究[J].爆炸与冲击,2010,30(6):588-592.
[24]陈嘉琛.多相燃料分散及瞬态云雾场数值模拟[D].北京:北京理工大学,2015.
[25]陈腾飞.高速云雾浓度、粒度、速度场分布及爆轰过程研究[D].北京:北京理工大学,2017.
[26]刘丽娟.瞬态多相云雾爆轰特性及其传播规律[D].北京:北京理工大学,2019.
第3章参考文献
[1]惠君明.FAE燃料抛撒与云雾状态的控制[J].火炸药学报,1999,22(1):10.
[2]范宝春,姚志霞,李鸿志.气云爆轰的一维模型[J].爆炸与冲击,1995,4:307-314.
[3]李定和.云爆弹云雾引信抛射轨迹的研究[J].兵工学报,1993(2):74-77.
[4]洪滔,秦承森,林文洲,等.悬浮RDX炸药和铝颗粒混合粉尘爆轰的数值模拟[J].爆炸与冲击,2009,29(5):468-473.
[5]刘庆明,白春华,张奇,等.多相云雾爆轰计算机仿真[J].兵工学报,2002,23(l):19-22.
[6]何志光,陈网桦,彭金华.二次FAE的火球温度及热辐射效应研究[J].安全与环境学报,2004,Vol.4:183-185.
[7]谢立军,叶剑飞,周凯元,等.固态燃料小型FAE装置空中爆炸场效应分析[J].实验力学,2006,20(4):579-583.
[8]崔晓荣,周听清,贾来兵,等.多元固相FAE的离散与爆轰的协调研究[J].实验力学.2006(02)
[9]惠君明,刘荣海,彭金华,等.燃料空气炸药威力的评价方法[J].含能材料,1996,4(3):123-128.
[10]李贝,余文力,王文欣,等.中心装药起爆方式对FAE影响的仿真研究[J].兵器自动化.2014(11):9.
[11]张陶,於津,惠君明.爆炸抛撒方式对FAE云雾爆轰特性及威力影响的实验研究[J].弹箭与制导学报,2010,30(1):137-140.
[12]刘云.爆炸抛撒云雾形貌特征及威力场研究[D].北京:北京理工大学,2016.
第4章参考文献
[1]胡澄.基于MIE散射理论的粉尘浓度测量研究[D].苏州:苏州大学,2007.
[2]顾侃.基于Mie散射理论的微粒粒径分布检测研究[D].上海:东华大学,2013.
[3]孙昕.基于Mie散射理论测量微小球粒粒径的数值模拟及实验研究[D].天津:天津大学,2004.
[4]李亦军.基于Mie散射的微粒浓度和粒度测试的理论与实验研究[D].太原:中北大学,2005.
[5]郑刚,蔡小舒.消光法测量微粒尺寸的测量下限的研究[J].仪器仪表学报,1998,19(5):503-507.
[6]郑刚等.用多波长消光法测量大颗粒的尺寸分布[J].光学学报,1993,13(2):165-169.
[7]刘铁英,等.三波长消光法测定微粒的粒径及其分布[J].仪器仪表学报,2000,21(2):208-210.
[8]Vâjâiac S N,Filip V,Ștefan S,et al.Assessing the size distribution of droplets in a cloud chamber from light extinction data during a transient regime[J].Journal of Atmospheric and Solar-Terrestrial Physics,2014,109(3):29-36.
[9]刘雪岭.瞬态多相云雾浓度、湍流及其爆炸物理特征实验研究[D].北京:北京理工大学,2016.
[10]Wu W,Liu L,Zhang Q.A new 20 L experimental vessel for dust explosion and measurement of local concentration[J].Journal of Loss Prevention in the Process Industries,2017,49:299-309.
[11]Novick V.Use of Series Light Extinction Cells to Determine Aerosol Number Concentration[J].Aerosol Science & Technology,1988,9(3):251-262.
[12]Hulst H C,van de Hulst H C.Light scattering by small particle[sM].Courier Corporation,1957.
[13]Kerker M.The Scattering of Light and Other Electromagnetic Radiation[J].1969,22(5):620-645.
第5章参考文献
[1]Abouelwafa A,John M E.The Use of Capacitance Sensors for Phase Percentage Determination in Multiphase Pipelines[J].IEEE Trans.on Instru.and Meas,1980,29(1):24-27.
[2]Xie C G,Plaskowski A,Beck M S.8-electrode capacitance system for two-component flow identification[J].IEE Proceedings,1989,136:173-183.
[3]张宝芬,焦明.电容式两相流浓度传感器的仿真及优化[J].清华大学学报(自然科学版),1992(1):25-30.
[4]谢秉川,何勤,等.半导体/绝缘体复合材料的介电特性和光谱特性[J].量子光学学报,2006(2):95-97.
[5]吴裕功,沈洪亮,等.两相复合介质等效介电常数的二维模拟计算[J].哈尔滨理工大学学报,2002,7(6):24-26.
[6]陈小林,成永红,等.两相复合材料等效复介电常数的计算[J].自然科学进展,2009,19(5):532-536.
[7]肖钢.多层吸波材料计算设计及优化研究[D].哈尔滨:哈尔滨工程大学,2003.
[8]肖婷,杨河林.非同心介质球壳内外的电场分布[J].高等函授学报(自然科学版),2008(1):13-17.
[9]周邢银.煤粉浓度测量用电容式传感器优化设计研究[D].保定:华北电力大学(河北),2005.
[10]董恩生,董永贵,等.同面多电极电容传感器的仿真与试验研究[J].机械工程学报,2006,42(2):6-11.
[11]刘少刚,安进华,等.单一平面电容传感器数学模型及有限元解法研究[J].哈尔滨工程大学学报,2011(1):79-84.
[12]向莉,董永贵.同面散射场电容传感器的电极结构与敏感特性[J].清华大学学报(自然科学版),2004,44(11):1471-1474.
[13]侯北平.基于信息融合的两相流参数检测研究[D].天津:天津大学,2001.
[14]陆增喜,王师.气固两相流速度测量算法研究[J].计量测试与检定,2007,17(3):7-9.
[15]陆耿,邹璐,等.基于电容测量和PCA法的两相流相浓度检测方法[J].中国计量学院学报,2003,14(1):15-18.
[16]薛庆忠,李文瀛.二元无规混合物的有效介电常数计算公式的改进[J].石油大学学报,1999,23(4):102-104.
[17]蔡建乐,乔楚良,等.混合物介电常数的立方根律及其相对论变换[J].河北大学学报,1999,19(2):129-131.
[18]赵凤章,李承祖,等.颗粒形混合物等效介电常数的一种近似理论[J].宇航材料工艺,1989(4):10-16.
[19]赵凤章,李承祖.导体颗粒与电介质混合物等效介电常数的近似理论[J].宇航材料工艺,1992(3):20-28.
[20]李剑浩.混合物电导率和介电常数的研究[J].地球物理学报,1996(39):364-370.
第6章参考文献
[1]Sewell C T J.On the extinction of sound in a viscous atmosphere by small obstacles of cylindrical and spherical form[J].Philos.Trans.Roy.Soc.London,1910,Ser.A210:239-270.
[2]Carstensen E L,Foldy L L.Propagation of sound through a liquid containing bubbles[J].Journal of the Acoustical Society of America,947,19(3):481-501.
[3]Urick R J,Ament W S.The propagation of sound in composite media[J].Journal of the Acoustical Society of America.1949,21:115-119.
[4]Epstein P S,Carhart R R.The Absorption of Sound in Suspensions and Emulsions 1:Water Fog in Air[J].Journal of the Acoustical Society of America,1954,25(3):553-565.
[5]Carstensen E l,Foldy L L.Propagation of sound through a liquid containing bubbles[J].Journal of the Acoustical Society of America,1947,19(3):481-501.
[6]Allegra J R,Hawley S A.Attenuation of sound in suspensions and emulsions:Theory and experiments[J].Journal of the Acoustical Society of America,1972,51(5):1545-1546.
[7]Riebel U.Characterization of Agglomerates and Porous Particles by Ultrasonic Spectrometry[C]//5th European Symposium Particle Characterization,Nurnberg,Germany,1992.
[8]J S Tebbutt,R E Challis.Ultrasonic wave propagation in colloidal suspension and emusions:a comparison of four models[J].Ultrasonics,1996(34):363-368.
[9]A S Dukhin,P J Goeetz,C W Hamlet.Acoustic spectroscopy for concentrated poly disperse colloids with low density contras[tJ].Langmiur,1996,12(21):1998-5004.
[10]U Riebel.Method of and an apparatus for ultrasonic measuring of the solids concentration and particle size distribution in a suspension[P].United States Patent 4706509,1987-11-17.
[11]Abda F,Azbaid A,Ensminger D,et al.Ultrasonic device for real-time sewage velocity and suspended particles concentration measurements[J].Water Science &Technology,2009,60(1):117.
[12]P V Nelson,Malcolm J W Povey,Yong tao Wang.An ultrasound velocity and attenuation scanner for viewing the temporale volution of a dispersed phase in fluid[sJ].Review and Scientific Instruments,2001,72(11):4234-4241.
[13]苏明旭,蔡小舒,等.超声衰减发测量颗粒粒度大小[J].仪器仪表学报,2004,25(4):1-2.
[14]苏明旭,蔡小舒,等.超声衰减法测量悬浊液中颗粒粒度和浓度[J].声学学报,2004,29(5):440-444.
[15]乔榛.超声法一次风流速和煤粉浓度在线测量研究[D].南京:南京理工大学,2013.
[16]郭盼盼,苏明旭,等.用蒙特卡罗方法预测液固两相体系中颗粒的超声衰减[J].过程工程学报,2014(4):562-567.
[17]胡浩浩.混浊海水声衰减初步研究[D].青岛:中国海洋大学,2007.
[18]李辉,李涛,等.煤体结构类型判断的超声波探测系统研究[J].中州煤炭,2006(5):1-2+38.
[19]王卫东,徐志强,等.基于ARM+uC/OS-II的超声波水煤浆粒度检测仪的设计[J].工矿自动化,2008(1):41-44.
[20]吴健,苏明旭,等.基于连续和脉冲超声波SiC颗粒粒度表征的对比[J].过程工程学报,2011(4):549-553.
[21]Lloyd,P,Berry,M V Wave propagation through an assembly of spheres:IV.Relations between different multiple scattering theories[J].Proceedings of the Physical Society,1991(3):678-688.
[22]Mc Clements,DJ Povey M.J.W.Scattering of ultrasound by emulsions[J].Journal of Physics and Applied Physics,1995,22(1):38-47.
[23]何桂春,倪文.超声粒度检测建模及其粒度分布反演计算[J].北京科技大学学报,2006,(12):1101-1105.
[24]苏杭丽.超声波在悬浮液中的衰减[J].河海大学学报(自然科学版),2012(6):710-714.
[25]张金伟.非均匀介质的吸收和散射衰减[D].北京:中国地震局地球物理研究所,2013.
[26]张宁波.基于超声衰减的污水悬浊液浓度检测装置研究[D].杭州:浙江大学,2016.
第7章参考文献
[1]Waltz E,Llinas J.Multisensor data fusion[M].London:Artech House,Inc,1990.
[2]李静,贾利民.数据融合综述[J].交通标准化,2007(9):192-195.
[3]赵建安.多传感器机动目标跟踪的自适应网格交互多模算法研究[D].太原:太原理工大学,2007.
[4]武晓嘉.多传感器数据融合在温室智能控制中的应用研究[D].太原:太原理工大学,2005.
[5]雷倩茹.基于信息融合技术的火灾探测方法研究[D].保定:华北电力大学(河北),2007.
[6]丁怡洁.工程结构损伤识别的信息融合方法研究[D].西安:西安建筑科技大学,2010.
[7]陈俊任,王保强,等.多传感器数据融合技术与应用[J].成都信息工程学院学报,2005,5:503-509.
[8]梁小宇.无线传感器网络的数据融合与时钟同步机制研究[D].武汉:武汉理工大学,2007.
[9]郭璘.基于信息融合的交通信息采集研究[D].合肥:中国科学技术大学,2007.
[10]胡春明.钢管混凝土拱桥的动力损伤检测与数据融合方法研究[D].沈阳:沈阳建筑大学,2009.
[11]Kalman R E.A New Approach to Linear Filtering and Prediction Theory [J].Transactions of the ASME-Journal of Basic Engineering,1960(82):35-46.
[12]Kalman R E,Bucy R S.New Results in Linear Filtering and Prediction Theory[J].Transactions Of the ASME-Journal of Basie Engineering,1961(83):95-108.
[13]申逸.Kalman滤波技术在目标跟踪中的应用研究[D].长沙:国防科技大学,2006.
[14]胡静.基于Kalman滤波的大坝监控统计模型研究[D].西安:西安理工大学,2007.
[15]Peters W H,Ranson W F.Digital Imaging Techniques in Experimental Stress Analysis[J].Optical Engineering.1981(21):427-431.
[16]Yamaguchi I.A Laser-speckle strain gauge[J].Journal of Physics E:Scientific Instruments,1981,14(11):1270-1273.
第8章参考文献
[1]张奇,白春华,等.燃料抛撒过程中的相似律[J].北京理工大学学报,2000,20(5):651-655.
[2]於津,彭金华,等.基于量纲分析的FAE爆炸场云雾膨胀半径的计算[J].弹箭与制导学报,2004,24(4):143-144.
[3]鞠伟,丁珏,等.燃料空气炸药爆炸抛撒初期燃料和壳体的运动特性[J].应用力学学报,2013,30(6):797-802.
[4]薛社生,刘家骢,等.液体燃料爆炸抛撒过程分析[J].南京理工大学学报,1998,22(l):34-38.
[5]薛社生.燃料空气炸药的爆炸抛撒研究[D].南京:南京理工大学,1997.
[6]薛社生,刘家骢,等.燃料爆炸抛撒成雾的实验与数值研究[J].爆炸与冲击,2001,21(4):272-276.
[7]薛社生,刘家骢.FAE云雾形成过程的实验研究[J].火炸药学报,2001,(2):11-12.
[8]蒲加顺,白春华,等.多元混合燃烧分散爆轰研究[J].火炸药学报,1998,21(l):l-5.
[9]郭明儒.云爆浓度快速多模检测机理与方法研究[D].北京:北京理工大学,2016.
[10]Kalman R E,Bucy R S.New Results in Linear Filtering and Prediction Theory[J].Transactions Of the ASME-Journal of Basie Engineering,1961(83D):95-108.
[11]申逸.卡尔曼滤波技术在目标跟踪中的应用研究[D].长沙:国防科技大学,2006.
[12]Hulst H C,van de Hulst H C.Light scattering by small particle[sM].Courier Corporation,1957.
[13]Kerker M.The Scattering of Light and Other Electromagnetic Radiation[J].Optics,1969,22(5):620-645.
[14]宋璐,张全法.FIR数字低通滤波器工频干扰抑制能力的提高[J].电子测量技术,2009(6):132-134.
[15]姜勤波,马红光,等.雷达信号全脉冲数据分析的极值序列分析方法[J].数据采集与处理,2007(2):212-217.
第9章参考文献
[1]Qi Z,Tan R.Effect of aluminum dust on flammability of gaseous epoxypropane in air[J].Fuel,2013,109(7):647-652.
[2]Salamonowicz Z,Kotowski M,et al.Numerical simulation of dust explosion in the spherical 20l vessel[J].Bulletin of the Polish Academy of Sciences Technical Sciences,2015,63(1):289-293.
[3]Cao W,Gao W,et al.Experimental and numerical study on flame propagation behaviors in coal dust explosions[J].Powder Technology,2014,266:456-462.
[4]Baudry G,Bernard S,et al.Influence of the oxide content on the ignition energies of aluminium powders[J].Journal of Loss Prevention in the Process Industries,2007,20(4-6):330-336.
[5]Chen Z,Fan B.Flame propagation through aluminum particle cloud in a combustion tube[J].Journal of Loss Prevention in the Process Industries,2005,18(1):13-19.
[6]Cashdollar K L.Overview of dust explosibility characteristics[J].Journal of Loss Prevention in the Process Industries,2000,13(3-5):183-199.
[7]Bing D,Huang W,et al.Visualization and analysis of dispersion process of combustible dust in a transparent Siwek 20 L chamber[J].Journal of Loss Prevention in the Process Industries,2015(33).
[8]Russo,Paola,Sanchirico,et al.Effect of the nozzle type on the integrity of dust particles in standard explosion test[sJ].Powder Technology,2015(279):203-208.
[9]Cashdollar K L,Chatrathi K.Minimum Explosible Dust Concentrations Measured in 20 L and 1-M Chambers[J].Combustion Science and Technology,1993,87(1-6):157-171.
[10]Spida M,et al.Solid Particle distribution of moderately concentrated suspensions in a pilot plant stirred vesse[lJ].Chemical Engineering Journal,2005,113(1):73-82.
[11]Yamazaki H,Tojo K,Miyanami K.Concentration Profiles of Solids Suspended in a Stirred Tank[J].Powder Technology,1986,48(3):205-216.
[12]Omotayo Kalejaiye,Paul R.Amyotte,et al.Cashdollar Effectiveness of dust dispersion in the 20-L Siwek chambe[rJ].Journal of Loss Prevention in the Process Industries,2010,23:46-59.
[13]Yang H,Su M,Wang X.Particle sizing with improved genetic algorithm by ultrasound attenuation spectroscopy[J].Powder Technology,2016(304):20-6.
[14]Challis R E,Povey M,et al.Ultrasound techniques for characterizing colloidal dispersions[J].Reports on Progress in Physics,2005,68(7):1541.
[15]Liu L.Population balance modelling for high concentration nanoparticle sizing with ultrasound spectroscopy[J].Powder Technology,2010(203):469-476.
[16]Yang H,Su M,Wang X.Particle sizing with improved genetic algorithm by ultrasound attenuation spectroscopy[J].Powder Technology,2016(304):20-26.
[17]Lloyd P.Wave propagation through an assembly of spheres:II.The density of single-particle eigenstates[J].Proceedings of the Physical Society,1967,90(1):207.
[18]Wang Q,Attenborough K,Woodhead S.Particle irregularity and aggregation effects in airborne suspensions at audio-and low ultrasonic frequencie[sJ].Journal of Sound and Vibration,2000(236):781-800.
[19]Hu H L,Xu T M,Hui S E,et al.A novel capacitive system for the concentration measurement of pneumatically conveyed pulverized fuel at power station[sJ].Flow Measurement & Instrumentation,2006,17(2):87-92.
[20]Chen Mo,Bai Chunhua,et al.Experimental Study on Explosion of Aluminum Powder/Air Mixture in Long Straight Horizontal Pipeline[J].Journal of Safety and Environment,2011,11(5):161-164.
[21]Benedetto A D,Russo P,et al.CFD simulations of turbulent fluid flow and dust dispersion in the 20-liter explosion vessel[J].Aiche Journal,2013,59(7):2485-2496.
[22]Zhang Qi,Lijuan Liu,et al.Effect of turbulence on explosion of aluminum dust at various concentrations in air[J].Powder Technology,2018(325):467-475.
第10章参考文献
[1]Zhang Q,Tan R.Effect of aluminum dust on flammability of gaseous epoxypropane in air[J].Fue,2013(105):512-517.
[2]Baudry G,Bernard S,Gillard P.Influence of the oxide content on the ignition energies of aluminum powders[J].Loss Prev,Process Ind,2007(20):330-336.
[3]Chen Z,Fan B.Flame propagation through aluminum particle cloud in a combustion tube[J].Loss Prev.Process Ind,2005(18)13-19.
[4]Cashdollar K L.Overview of dust explosibility characteristics[J].Loss Prev,Process Ind,2000(13):183-199.
[5]Du B,et al.Visualization and analysis of dispersion process of combustible dust in a transparent Siwek 20-L chamber[J].Process Ind,2015(33):213-221.
[6]Sanchirico R,Di Sarli V,Russo P,et al.Effect of the nozzle type on the integrity of dust particles in standard explosion tests[J].Powder Technol,2015(279):203-208.
[7]Cashdollar K L,Chatrathi K.Minimum explosible dust concentrations measured in 20-L and 1-m3 chambers[J].Combustion Science and Technology,1992(87):157-171.
[8]Z Salamonowicz,M Kotowski,M Półka W Barnat.Numerical simulation of dust explosion in the spherical 20L vessel,Bulletin of the Polish Academy of Sciences[J].Tech Sci,2015(63):289-293.
[9]W Cao,W Gao,Y Peng,J Liang,F Pan,S Xu.Experimental and numerical study on flame propagation behaviors in coal dust explosions[J].Powder Technol,2014(266):456-462.
[10]Di Benedetto A,Russo P,Sanchirico R,et al.CFD Simulations of turbulent fluid flow and dust dispersion in the 20liter explosion vessel[J].AICHE J,2013(59):2485-2496.
[11]Serafin J,Bebcak A,Bernatik A,et al.The influence of air flow on maximum explosion characteristics of dust-air mixtures[J].Process Ind,2013(26):209-214.
[12]Eckhoff R K.Scaling of dust explosion violence from laboratory scale to full industrial scale-A challenging case history from the past[J].Process Ind,2015(36):271-280.
[13]Di Sarli V,Russo P,Sanchirico R,et al.CFD simulations of dust dispersion in the 20 L vessel:effect of nominal dust concentration[J].Process Ind,2014(27):8-12.
[14]Zhang Q,Liu L J.Effect of turbulence on explosion of aluminum dust at various concentrations in air[J].Powder Technol,2018(325):467-475.
[15]Kalejaiye O,Amyotte P R,Pegg M J,et al.Effectiveness of dust dispersion in the 20-L Siwek chamber[J].Process Ind,2010(23):46-59.
[16]Zhai X.Heat balance application in the intermediate storage pulverizing system coal concentration measurement[J].Appl Energy Technol,2013(35):215-236.
[17]张奇,白春华,等.中心装药对FAE燃料成雾特性影响的试验分析[J].含能材料,2007,15(5):447-450.
[18]陈默,白春华,等.长直水平管道中铝粉空气混合物爆炸试验研究[J].安全与环境学报,2011,11(5):161-164.
[19]Chen J C,Ma X,Ma Q J.Study on concentration and turbulence of solid-liquid FAE in dispersal process[J].Defence Technology,2018,14(6):657-660.
[20]李席,王伯良,等.液固复合FAE云雾状态影响因素的试验研究[J].爆破器材,2013,42(5):23-26.
[21]丁珏,刘家骢.液体燃料爆炸抛撒和FAE形成过程的数值模拟[J].南京理工大学学报,2000,24(2):168-171.
[22]Zhang Q,Wei K Z,Luo A M,et al.Numerical simulation on dispersal character of fuel by central HE[J].Defence Science Journal,2007,57(4):425-433.
[23]陈嘉琛,张奇,等.固体和液体混合燃料抛撒过程数值模拟[J].兵工学报,2014,35(7):972-976.
[24]Yamazaki H,Tojo K,Miyanami K.Concentration profiles of solids suspended in a stirred tank[J].Powder Technology,1986,48(3):205-216.[25]Omotayo K,Paul R A,Michael J P,et al.Cashdollar effectiveness of dust dispersion in the 20-L Siwek chambe[rJ].Journal of Loss Prevention in the Process Industries,2010,23(1):46-59.
[26]郭明儒,娄文忠,等燃料空气炸药固体燃料浓度动态分布试验研究[J].兵工学报,2016,37(2):226-231.
第11章参考文献
[1]Baker R C.Flow Measurement Handbook:Other Momentum-Sensing Meters[P].2016,10.1017/CBO9781107054141(8):195-233.
[2]Rahimi-Gorji M,Gorji T B,et al.Details of regional particle deposition and airflow structures in a realistic model of human tracheobronchial airways:two-phase flow simulation[J].Computers in Biology and Medicine,2016,74:1-17.
[3]Rahimi-Gorji M,Pourmehran O,et al.CFD simulation of airflow behavior and particle transport and deposition in different breathing conditions through the realistic model of human airways[J].Journal of Molecular Liquids,2015,209:121-133.
[4]Thorn R,Johansen G A,et al.Recent developments in three-phase flow measurement[J].Measurement Science & Technology,1997,8(7):691.
[5]Thorn R,Johansen G,Hjertaker B.Three-phase flow measurement in the petroleum industry[J].Measurement Science and Technology,2013(24):1-17.
[6]Falcone G,Hewitt G,Alimonti C,et al.Multiphase flow metering:current trends and future developments[J].Journal of Petroleum Technology,2002(54):77-84.
[7]Yan Y.Mass flow measurement of bulk solids in pneumatic pipelines[J].Measurement Science and Technology,1996(7):1687-1706.
[8]Y Zheng,Q Liu.Review of certain key issues in indirect measurements of the mass flow rate of solids in pneumatic conveying pipelines[J].Measurement,2010(43):727-734.
[9]Sun J,Yan Y.Non-instrusive measurement and hydrodynamics characterization of gas-solid fluidized beds:a review[J].Measurement Science and Technology,2016(27):1-31.
[10]Albion K J,Briens L,Briens C,et al.Multiphase Flow Measurement Techniques for Slurry Transport[J].International Journal of Chemical Reactor Engineering,2011,9(1):537-568.
[11]Zadeh L A.Soft computing and fuzzy logic[J].IEEE Software,1994,11(6):48-56.
[12]Musoff H,Zarchan P.Fundamentals of Kalman Filtering:A Practical Approach[M]//Linearized Kalman Filtering.2005:549-585.
[13]Das S,Kumar A,et al.On soft computing techniques in various areas[G]//Proceedings of the National Conference on Advancement of Computing in Engineering Research,2013.
[14]Meireles M R G,Almeida P E M,et al.A comprehensive review for industrial applicability of artificial neural networks[J].Industrial Electronics,2003,50(3):585-601.
[15]Hagan M T,Demuth H B,et al.Neural network design[M].Beijing:China Machine Press,2002.
[16]Kevin Gurney.An Introduction to Neural Networks[OL/EB].Taylor & Francis e-Library,2004.
[17]Bowden G J,Dandy G C,et al.Input determination for neural network models in water resources applications.Part1-Background and methodology[J].Journal of Hydrology,2005,301(1-4):75-92.
[18]Cortes C,Vapnik V.Support-Vector Networks[J].Machine Learning,1995,20(3):273-297.
[19]Jordan M,Kleinberg J,Scholkopf B.Support Vector Machines[J],Information Science and Statistics,Springer,2008(12):35-46.
[20]Ben-Hur A.Support vector clustering[J].Scholarpedia,2008,3(6):5187.
[21]Suykens J,Vandewalle J.Least Squares Support Vector Machine Classifiers[J].Neural Processing Letters,1999,9(3):293-300.
[22]Jayadeva,Khemchandani R,et al.Twin Support Vector Machines for Pattern Classification[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2007(29):905-910.
[23]Gönen M,Alpaydın E.Multiple Kernel Learning Algorithms[J].Journal of Machine Learning Research,2011(12):2211-2268.
[24]Lin C F,Wang S D.Fuzzy support vector machines[J].IEEE Transactions on Neural Networks,2002,13(2):464-471.
[25]Tian Y,Shi Y,Liu X.Recent advances on support vector machines research[J].Technological & Economic Development of Economy,2012,18(1):5-33.
[26]Nedjah N,Mourelle L,Abraham A.Genetic Systems Programming Theory and Experiences:Theory and Experiences[J].Studies in Computational Intelligence,2006(36):6-25.
[27]Madár J,Abonyi J,Szeifert F.Genetic Programming for the Identification of Nonlinear Input-Output Models[J].Industrial & Engineering Chemistry Research,2015,44(9)3178-3186.
[28]Castillo O,Melin P.A review on interval type-2 fuzzy logic applications in intelligent control[J].Information Sciences,2014(279):615-631.
[29]Koski T,Noble J.A Review of Bayesian Networks and Structure Learning[J].Annales Societatis Mathematicae Polonae,2012,40(1):53-103.
[30]Chang F J,Chang Y T.Adaptive Neuro-Fuzzy Inference System for Prediction of Water Level in Reservoir[J].Advances in Water Resources,2006,29(1):1-10.
[31]Melin P,Castillo O.Intelligent control of complex electrochemical systems with a neuro-fuzzy-genetic approach[J].IEEE Transactions on Industrial Electronics,2001,48(5):951-955.
[32]Figueiredo M,Goncalves J L,et al.The use of an ultrasonic technique and neural networks for identification of the flow pattern and measurement of the gas volume fraction in multiphase flow[sJ].Experimental Thermal and Fluid Science,2016,70:29.
[33]Xu L.,Zhou W,Li X,et al.Wet Gas Metering Using a Revised Venturi Meter and Soft-Computing Approximation Techniques[J].IEEE Transactions on Instrumentation & Measurement,2011,60(3):947-956.
[34]Shaban H,Tavoularis S.Measurement of gas and liquid flow rates in two-phase pipe flows by the application of machine learning techniques to differential pressure signals[J].International Journal of Multiphase Flow,2014,67:106-117.
[35]Tinghu Yan,Shiwei Fan,et al.Two-Phase Air-Water Slug Flow Measurement in Horizontal Pipe Using Conductance Probes and Neural Network[J].IEEE Transactions on Instrumentation and Measurement, 2014,63(2):456-466.
[36]Yan Y,Xu L,Lee P.Mass flow measurement of fine particles in a pneumatic suspension using electrostatic sensing and neural network techniques[J].IEEE Trans.Instrum.Meas,2006,55:2330-2334.
[37]Meribout M,Al-Rawahi N,et al.Integration of impedance measurements with acoustic measurements for accurate two phase flow metering in case of high water-cut[J].Flow Measurement and Instrumentation,2010,21(1):8-19.
[38]Meribout M,Al-Rawahi N Z,et al.A Multisensor Intelligent Device for Real-Time Multiphase Flow Metering in Oil Field[sJ].IEEE Transactions on Instrumentation and Measurement,2010,59(6):1507-1519.
[39]Wang X,Hu H,Zhang A.Concentration measurement of three-phase flow based on multi-sensor data fusion using adaptive fuzzy inference system[J].Flow Measurement & Instrumentation,2014,39:1-8.
[40]Wang X,Hu H,Liu X.Multisensor Data Fusion Techniques With ELM for Pulverized-Fuel Flow Concentration Measurement in Cofired Power Plant[J].IEEE Transactions on Instrumentation and Measurement,2015,64(10):1-15.
[41]Liu R P,Fuent M J,et al.A neural network to correct mass flow errors caused by two-phase flow in a digital coriolis mass flowmeter[J].Flow Measurement & Instrumentation,2002,12(1):53-63.
[42]Henry M,Tombs M,et al.Two-phase flow metering of heavy oil using a Coriolis mass flow meter:A case study[J].Flow Measurement & Instrumentation,2006,17(6):399-413.
[43]Shi Y,Jiang R W,et al.Gas-Liquid Two-Phase Flow Correction Method for Digital CMF[J].IEEE Transactions on Instrumentation and Measurement,2014,63(20)2396-2404.
[44]Ma L B,Zhang H J,et al.Mass flow measurement of oil-water two-phase flow based on Coriolis flow meter and SVM[J].Journal of Chemical Engineering of Chinese Universities,2007,21(2):200-205.
[45]Wang L.Gas-liquid Two-phase Flow Measurement Using Coriolis Flowmeters Incorporating Artificial Neural Network,Support Vector Machine and Genetic Programming Algorithms[J].IEEE Transactions on Instrumentation and Measurement,2016(66):852-868.
[46]Wang L,Yan Y,et al.Input variable selection for data-driven models of Coriolis flowmeters for two-phase flow measurement[J].Measurement Science and Technology,2017,28(3):454-472.
[47]Lecun Y,Bengio Y,et al.Deep learning[J],Nature,2015(521):436-444.
[48]Azamathulla H M,Ahmad Z.Estimation of Critical Velocity for Slurry Transport through Pipeline Using Adaptive Neuro-Fuzzy Interference System and Gene-Expression Programming[J].Journal of Pipeline Systems Engineering & Practice,2013,55(2):131-137.
第12章参考文献
[1]交通运输部,国家卫生健康委,海关总署,国家药品监督管理局.新冠病毒疫苗货物运输指南[OL/EB].[2021-01-25].http://www.gov.cn.
[2]Adrián Mota-Babiloni,Joybari MM,et al.Ultralow-temperature refrigeration systems:Configurations and refrigerants to reduce the environmental impact[J].International Journal of Refrigeration,2019(3):111.
[3]李海青,等.两相流参数检测及应用[M].杭州:浙江大学出版社,1991.
[4]郭烈锦,等.两相与多相流动力学[M].西安:西安交通大学出版社,2002.
[5]Lou W,Yi X,Qi B.The Simulation for Pressure Loss of Microchannel Heat Sinks Inlet[G]//2nd IEEE International Conference on Nano/Micro Engineered and Molecular Systems.2007.
[6]Wang H C,Guo H,et al.Thermodynamic Design and Analysis of Movable Small Scale Mixed-refrigerant Liquid Nitrogen Generators[J].International Journal of Refrigeration,2018(90):202-215.
[7]Qinglu Song,Yanxing Zhao,et al.Condensation two-phase flow patterns for zeotropic mixtures of tetrafluoromethane/ethane in a horizontal smooth tube[J].International Journal of Heat and Mass Transfer,2020(148).135-147.
[8]Birvalski M,Tummers M J,et al.The PIV measurements of waves and turbulence in stratified horizontal two-phase pipe flow[J].International Journal of Multiphase Flow,2014,62(10):161-173.
[9]Li Yijian,Wu Shuqin,et al.Experimental study on the performance of capacitance-type meters for slush nitrogen measurement[J].Experimental Thermal and Fluid Science,2017(88):103-110.
[10]Chaudhuri A,Sinha D N,et al.Mass fraction measurements in controlled oil-water flows using noninvasive ultrasonic sensors[J].Journal of Fluids Engineering,2014,136(3):301-304.
[11]Abouelwafa M S,Kendall E J.Optimization of continuous wave nuclear magnetic resonance to determine in situ volume fractions and individual flow rates in two component mixtures[J].Review of Scientific Instruments,1979,50(12):1545-1549.
[12]Allegra J R,Hawley S A.Attenuation of sound in suspensions and emulsions:theory and experiments[J].Journal of Acoustical Society of America,1972,51(5):1545-1560.
[13]Chang J S,Ichikawa Y,Irons G A,et al.Void fraction measurement by an ultrasonic transmission technique in bubbly gas-liquid two-phase flow[J].Measuring Techniques in Gas-Liquid Two-Phase Flows.Springer Berlin Heidelberg,1984(9):319-335.
[14]Falcone G,Hewitt G,Alimonti C.Multiphase flow metering:principles and applications[J].Elsevier,2009(12):54.
[15]Figueiredo M M F,Goncalves J L,et al.The use of an ultrasonic technique and neural networks for identification of the flow pattern and measurement of the gas volume fraction in multiphase flows[J].Experimental Thermal and Fluid Science,2016(70):29-50.
[16]许传龙.气固两相流颗粒荷电及流动参数检测方法研究[D].南京:东南大学,2005.
[17]王自亮.粉尘浓度传感器的研制和应用[J].工业安全与环保,2006,32(4):24-27.
[18]侯宇刚,刘增平,等.粉尘浓度在线监测监控系统在煤矿企业的应用[J].采矿技术,2006,6(3):426-428.
[19]李运芝,袁俊明,等.粉尘爆炸研究进展[J].太原师范学院学报(自然科学版),2004,3(2)79-82.
[20]黎世静,马军德,等.粉尘浓度传感器在粮食系统中的应用[J].电子世界,2017(8):129.
[21]刘炜.煤矿工作场所空气中粉尘浓度检测[J].煤炭与化工,2017,40(3):154-156.
[22]刘银,廖志鑫,等.基于单片机的粉尘检测系统的设计[J].煤矿机械,2011,32(7):240-243.
[23]田军委,邓晓荣,等.智能粉尘浓度检测系统设计[J].科技创新导报,2015(32):24-25.
[24]曾世清,龚本龙,等.粉尘浓度在线检测的探讨[J].中国科技信息,2017(1):69.
[25]唐娟.粉尘浓度在线监测技术的现状及发展趋势[J].矿业安全与环保,2009,36(5)69-71.
[26]王建宇,丘创逸.模糊综合方法在中小化工企业的职业病危害风险评估中的应用[J].职业与健康,2010,26(1):1-4.