抑制晚期糖基化终末产物(AGEs)的产生
晚期糖基化终末产物(AGEs)是以蛋白质、脂肪及核酸的氨基和还原糖(葡萄糖、果糖、戊糖等)为原料,发生非酶催化反应,生成的稳定共价化合物。AGEs 可促使胶原蛋白交联并诱发炎症,进而抑制皮肤细胞生长(图9.10)[55]。
在我们的饮食中存在各种糖基化终产物 (AGEs),我们身体的生物化学过程也可产生以代谢废物形式存在的AGEs。某些AGEs 寿命很短,很容易被机体清除,另一些AGEs 长期存在,形成可破坏组织结构的交联物。AGEs 的增加是退行性老化的原因之一,可引起炎症、血管硬化、皮肤弹性丧失、软骨及骨骼强度下降等各种症状。
尽管我们对AGEs 引起衰老已有深入了解,但在开发清除AGEs(如人体组织中的葡萄糖网格)的治疗方面进展很小。加快这个领域的进展是SENS 研究基金会的目标之一,其雇员正在与几个实验室的早期研究协调,目的是建立鼓励广泛参与的基础工具和方法学。Fang 等人2015年发表在Geriatrics & Gerontology International 的研究数据,是为什么需要把AGEs 清除作为未来年轻化工具之一的例证。他们的研究主要聚焦于AGEs 在促进细胞老化和纤维化中的作用,目标是评估糖基化终端产物(AGEs)对心脏衰老的作用,尝试理解其发生机制[56]。

图9.10 蛋白质糖基化会加速衰老
他们将培养的新生大鼠心肌成纤维细胞分成4 组:对照组、AGEs 组、AGEs+ AGEs 抗体受体组和AGEs + SB431542(TGF-β/信号通路抑制剂,10 μmol/L)组。培养48 小时后,收集细胞,分析与老化有关的β-半乳糖苷酶表达,之后通过Western 印迹法评估p16、TGF-β、Smad/p-smad 和基质金属蛋白酶-2 的变化。在AGEs 组中观察到与老化有关的β-半乳糖苷酶活性和p16 水平显著增加。AGEs 也能使心肌成纤维细胞中的TGF-β1、p-smad2/3、金属蛋白酶的表达显著增加。同时,AGEs 受体抗体或SB431542 的预处理可显著抑制AGEs 诱导的心肌老化(β-半乳糖苷酶活性、p16)和纤维化标志物(GF-β1、p-smad2/3 和金属蛋白酶-2)。这些结果表明AGEs 是心肌衰老和纤维化的重要因子,AGEs 受体和TGF-β/Smad 信号传导途径可能与AGEs 诱导的心脏老化过程有关。
英国Bath 大学的奥马尔·卡萨等人2017年在《科学报告》期刊上发表的研究进展表明,在阿尔茨海默病(AD)早期,患者血糖浓度偏高会对巨噬细胞迁移抑制因子(MIF)的结构与功能造成负面影响,进而使患者的免疫系统受损,症状加重[57]。
早期的大量生化证据表明许多蛋白质的糖基化(glycosylation)会使蛋白质结构改变并丧失正常生物功能,AD 与蛋白质的糖基化反应有相关性。在卡萨等人的新研究中使用了糖基化检测新技术,能高灵敏检测出AD 患者大脑样本中的蛋白质糖基化变化过程。他们的检测数据表明,在AD 的初期MIF 已开始出现糖基化,在中晚期MIF 糖基化的程度进一步加重。MIF 是调节脑神经胶质细胞对β-淀粉样蛋白沉积产生免疫应答的关键因子,MIF 的高度糖基化会严重损伤其免疫调节功能,导致β-淀粉样蛋白沉积斑块无法得到有效控制,这是阿尔茨海默病的关键诱因之一。
目前尚不清楚是否能在AD 患者血液中检测出糖基化的MIF,但无论如何,为了降低罹患阿尔茨海默病的风险,必须控制饮食中的糖摄入量和避免高血糖,以便减少MIF 糖基化的发生概率[57]。
晚期糖基化终产物(AGEs)与衰老有关,是因为它们可形成损伤组织结构的交联,或通过AGEs 受体引发慢性炎症。有许多功能不尽相同的AGEs 类型,某些可被机体的生物化学机制迅速降解,另一些则不尽然。AGEs 作为代谢废物在身体内产生,也可从食物摄入。有两类性质完全不同的AGEs,一类随着时间缓慢形成,另一类按照摄入和持续清除的速度产生变化。AGEs 在小鼠等短寿动物的衰老病理学中的作用,与人类等长寿动物完全不同,这妨碍了早期通过清理损伤组织的AGEs 进行治疗的努力。
哪一种饮食的AGEs 对衰老更为重要仍有争议,但半衰期较短的AGEs 的炎症影响对衰老更重要。法国普瓦捷大学的Lorena Perrone 等人2015年在Journal of Alzheimer’ s Disease 上发表的论文指出,尽管已有很多在体内形成的AGEs 与阿尔茨海默病相关的论文,但AGEs 也可在高温烹制食物时或在硬奶酪长期保存后产生。AGEs 可通过炎症和氧化应力等不同机制,增加患各种慢性病的风险。AGE 可与AGEs 受体(RAGE)结合,RAGE 能使β-淀粉样蛋白穿过血脑屏障,在一定程度上造成阿尔茨海默病的发生/发展[58]。
Perrone 等人的研究关注民族特色食品中AGEs 的含量与临床疾病的关系,将总AGEs 与阿尔茨海默病发生率进行比较。为了达到这一目的,他们使用不同的方法烹饪549 种食物,测定烹饪后食物中的AGEs 含量,从而得到许多食物的AGEs 数值。
Perrone 等人发现烹饪温度越高,AGEs 含量越高。例如,100 g 的生牛肉有707 KU 的AGEs,但100 g 的烤牛肉有6071 KU 的AGEs。在一般民族特色食品中,肉类的AGEs 含量最高,其次是菜油、奶酪和鱼类,而谷物、鸡蛋、水果、豆类、牛奶、坚果、含淀粉根茎和蔬菜中的AGEs 含量较低,因为它们的制作温度一般较低,在饮食中所占比例也较小。
这项流行病学研究支持先前提出的膳食AGEs 在动物和人的阿尔茨海默病中起重要作用的假说。Perrone 等人发现,如果小鼠摄入类似西方饮食的高AGEs食物,在大脑中会有高水平的AGEs 以及β 淀粉样沉积(阿尔茨海默病特异斑块的组分),同时还会有认知和运动能力的下降,而饲喂低AGEs 食物的小鼠则没有这些疾病。临床研究也发现如果高AGE 饮食造成血液中的AGEs 较高,之后有可能产生认知能力的下降[58]。
克罗地亚扎格拉布大学药学院的研究人员Jasminka Kristic 等人2013年发现一组与日历年龄(实龄)和生物学年龄密切相关的特殊多糖分子变化,在此之前已发现的衰老生物标志物包括甲基化类型和端粒长度。有效测定生物学年龄非常重要,特别是对于测定个体损伤以及对于即将出现的第一代年轻化治疗,是必须具备的评估方法。在寿命研究中使用等待和观察的方法,已被实验室小鼠证明在时间和经费两方面都过于昂贵,对于人类寿命的研究是不可行的。
糖基化是调节免疫球蛋白功能的关键翻译后的修饰机制,对于免疫系统有多重系统性影响。Jasminka Kristic 等人对来自4 个欧洲族群的5 117 人进行了IgG(免疫球蛋白)糖基化研究,发现IgG 的糖基化随着年龄发生广泛、复杂的变化。三个IgG 多糖(FA2B、FA2G2 和FA2BG2)随着年龄会发生显著改变,其组合指数可用于表示58%的日历年龄变化,比端粒长度测定等生物标志物要灵敏的多。在这3 个多糖中的其他变化与生物学年龄的生理学参数密切相关。因此,IgG 糖基化与日历年龄和生物学年龄紧密相关。对于疾病预防、治疗以及司法取证,使用IgG 糖基化分子图谱测定人的生物学年龄,有重要的应用价值[59]。
IgG 多糖在炎症中起重要作用,由于随着年龄的增长可促发炎症,IgG 糖基化的变化也很可能是衰老的一个因素。
根据上述研究,在健康医学中除了使用对抗蛋白质糖基化的药物(牛磺酸、二甲双胍、吡格列酮、己酮可可碱、阿司匹林、维生素C、维生素E、氨基胍等),也注重抗AGEs 的营养素/食物的选择,包括类胡萝卜素、硫辛酸、谷物、豆类、含淀粉根茎、蔬菜、坚果、蓝莓、蔓越莓、诺丽果、柠檬、柑橘、醋(酸性食物可减少AGEs)。
参考文献
[1]ISAACSON B. Silicon valley is trying to make humans immortal—and finding some success[EB/OL]. (2015/03/13)[2018-12-30]. http://www.newsweek.com/2015/03/13/siliconvalley-trying-make-humans-immortal-and-finding-some-success-311402.html.
[2]LOPEZOTIN C, BLASCO M A, PATRIDGE L, et al. The hallmarks of aging[J]. Cell, 2013,153(6): 1194-1217.
[3]GUARENTE L. Aging research—where do we stand and where are we going?[J].Cell, 2014,159(1):15-19.
[4]MARTINXEZ-ZAMUDIO R I, ROBINSON L, ROUX P F, et al. Snapshot: cellular senescence pathways[J]. Cell, 2017, 170(4): 816.
[5]FONTANA L, PATRIDGE L. Promoting health and longevity through diet: from model organisms to humans[J]. Cell, 2015, 161(1): 106-118.
[6]GEBEL K, DING D, CHEY T, et al. Effect of moderate to vigorous physical activity on allcause mortality in middle-aged and older Australians[J]. JAMA Intern Med, 2015, 175(6):970-977.
[7]BARBIERI E, AGOSTINI D, POLIDORI E, et al. The pleiotropic effect of physical exercise on mitochondrial dynamics in aging skeletal muscle[J/OL]. Oxidative Medicine and Cellular Longevity, 2015: 917085[2018-12-30]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4402202.
[8]BLATTER J S, DVORAK, J. Football for Health - Science proves that playing football on a regular basis contributes to the improvement of public health[J/OL]. Scandinavian Journal of Medicine & Science in Sports, 2014, 24(1): 2-3.
[9]HAMZELOU J. Young ovaries rejuvenate older mice and extend their lifespan[EB/OL].(2016-10-11)[2018-12-30].https://www.newscientist.com/article/2108682-young-ovariesrejuvenate-older-mice-and-extend-their-lifespan.
[10]TOWNSLEY D M, DUMITRIU B, Liu D, et al. Danazol treatment for telomere diseases[J].N Engl J Med, 2016, 374(20): 1922-1931.
[11]VAN DER SPOEL E, JANSEN S W, AKINTOLA A A, et al. Growth hormone secretion is diminished and tightly controlled in humans enriched for familial longevity[J]. Aging Cell.2016, 15(6): 1126-1131.
[12]GIACCONI R, MALAVOLTA M, COSTARELLI L, et al. Cellular senescence and inflammatory burden as determinants of mortality in elderly people until the extreme old age[J]. EBioMedicine, 2015, 2(10): 1316-1317.
[13]TUCKER L A. Physical activityand telomere length in U.S. men and women: an NHANES investigation[J]. Preventive Medicine, 2017, 100:145-151.
[14]REHMAN J. Aging: Too much telomerase can be as bad as too little[EB/OL].(2014/07/05)[2018-12-30].http://blogs.scientificamerican.com/guest-blog/2014/07/05/aging-too-muchtelomerase-can-be-as-bad-as-too-little.
[15]ZHANG W Q, LI J Y, SUZUKI K, et al. A Werner syndrome stem cell model unveils heterochromatin alterations as a driver of human aging[J]. Science, 2015, 348(6239):1160-1163.
[16]KUBBEN N, ZHANG W Q, WANG L X, et al. Repression of the antioxidant NRF2 pathway in premature aging[J]. Cell, 2016, 165(6): 1361-1374.
[17]MISTRIOTIS P, VIVEK K B, WANG X Y, et al. NANOG reverses the myogenic differentiation potential of senescent stem cells by restoring ACTIN filamentous organization and SRF-dependent gene expression[J]. Stem Cells, 2017, 35(1): 207-222.
[18]GIUSEPPEP, DE RANGE F, MONTESANTO A. Human longevity: Genetics or Lifestyle? It takes two to tango[J/OL]. Immunity & Ageing, 2016, 13:12[2018-12-30]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4822264.
[19]FORTNEY K, DOBRIBAN E, GARAGNANI P, ?et al. Genome-wide scan informed by age-related disease identifies loci for exceptional human longevity[J/OL]. PLoS Genetis,2015 11(12): e1005728[2018-12-30]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4683064.
[20]JUHYUN O H, YANG D L,AMY J W. Stem cell aging: mechanisms, regulators and therapeutic opportunities [J]. Nat Med., 2014, 20(8): 870-880.
[21]KEELY J. Study examines scale of gene mutations in human neurons[EB/OL]. (2015-10-1)[2018-12-30]. http://www.hhmi.org/news/study-examines-scale-gene-mutations-humanneurons.
[22]REGALADO A. Three questions for J. Craig Venter[EB/OL].(2014-7-30)[2018-12-30].http://www.technologyreview.com/news/529601/three-questions-for-j-craig-venter.
[23]MOSTAFAVI H, BERISA TOMAZ, DAY F R, et al. Identifying genetic variants that affect viability in large cohorts[J/OL]. PLoS Biology, 2017, 15(9):e2002458. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5584811.
[24]Li J, BONKOWSKI MS, MONIOT S, et al. A conserved NAD+ binding pocket that regulates protein-protein interactions during aging[J]. Science, 2017, 355(6331): 1312-1317.
[25]SALIM K Y, MALEKI VAREKI S, DANTER W R, et al. COTI-2, a novel small molecule that is active against multiple human cancer cell lines in vitro and in vivo[J]. Oncotarget, 2016,7(27): 41363-41379.
[26]STUBBS T M, BONDER M J, STARK A K, et al. Multi-tissue DNA methylation age predictor in mouse[J/OL]. Genome Biology, 2017, 18:68[2018-12-30]. https://genomebiology.biomedcentral.com/articles/10.1186/s13059-017-1203-5.
[27]BOOTH L N. The Aging Epigenome[J].Molecular Cell, 62(5): 728-744.
[28]HANNIGAN A M and GORSKI S M. Macroautophagy: the key ingredient to a healthy diet?[J]. Autophagy. 2009, 5(2): 140-151.
[29]STRANKS A J, HANSEN A L, PANSE I, et al. Autophagy controls acquisition of aging features in macrophages[J]. J Innate Immun, 2015, 7(4): 375-391.
[30]KANG H T, PARK J T, CHOI K, et al. Chemical screening identifies ATM as a target for alleviating senescence[J]. Nature Chemical Biology, 2017, 13:616-623.
[31]FONTANA L, PARTRIDGE L, LONGO V D. Extending healthy lifespan—from yeast to humans[J]. Science, 2010, 328(5976): 321-326.
[32]MATTISON J A, COLMAN R J, BEASLEY M T, et al. Caloric restriction improves health and survival of rhesus monkeys[J/OL]. Nature Communication, 2017, 8: 14063. [2018-12-30]. https://www.nature.com/articles/ncomms14063.
[33]LUCIANO M, CORLEY J, COX S R, et al. Mediterranean-type diet and brain, structural change from 73 to 76 years in a Scottish cohort[J]. Neurology, 2017, 88(5): 449-455.
[34]CURRAIS A, FARROKHI C, DARGUSCH R, et al. Fisetin reduces the impact of aging on behavior and physiology in the rapidly aging SAMP8 mouse[J]. J Gerontol A Biol Sci Med Sci, 2018, 73(3): 299-307.
[35]GREEN DR, GALLUZZI L, KROEMER G. Mitochondria and the autophagy-inflammationcell death axis in organismal aging[J]. Science, 2011, 333(6046): 1109-1112.
[36]HEKIMI S, LAPOINTE J, WEN Y.Taking a “good” look at free radicals in the aging process[J]. Trends Cell Biol, 2011, 21(10): 569-576.
[37]GAZIEV A I, ABDULLAEV S, PODLUTSKY A. Mitochondrial function and mitochondrial DNA maintenance with advancing age[J]. Biogerontology, 2014, 15(5): 417-438.
[38]CORREIA M C, MARQUES F D, ANDERSON R, et al. Mitochondria are required for proageing features of the senescent phenotype[J]. EMBO Journal, 2016, 35(7): 724-742.
[39]LAKER R C, DRAKE J C, WILSON R J, et al. Ampk phosphorylation of Ulk1 is required for targeting of mitochondria to lysosomes in exercise-induced mitophagy[J]. Nature Communications, 2017, 8(1): 548.
[40]HILLA S, VAN REMMEN H. Mitochondrial stress signaling in longevity: A new role for mitochondrial function in aging[J/OL]. Redox Biol, 2014, 2: 936-944[2018-12-30].https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4143811.
[41]SGARBI G, MATARRESE P, PINTI M, et al. Mitochondria hyperfusion and elevated autophagic activity are key mechanisms for cellular bioenergetic preservation in centenarians[J]. Aging, 2014, 6(4): 296-310.
[42]RANA A, OLIVEIRA M P, KHAMOUI A V, et al. Promoting Drp1-mediated mitochondrial fission in midlife prolongs healthy lifespan of Drosophila melanogaster [J]. Nature Communications, 2017, 8(1): 448.
[43]CAMPISI J, D’ ADDA D I, FAGAGNA F. Cellular senescence: when bad things happen to good cells[J]. Nat. Rev. Mol. Cell Biol, 2007, 8(9): 729-740.
[44]KUILMAN T, MICHALOGLOU C, MOOI W J, et al. The essence of senescence[J]. Genes Dev., 2010, 24(22): 2463-2479.
[45]SEVERINO V, ALESSIO N, FARINA A, et al. Insulin-like growth factor binding proteins 4 and 7 released by senescent cells promote premature senescence in mesenchymal stem cells[J/OL]. Cell Death Dis. 2013, 4:e911[2018-12-30]. https://www.nature.com/articles/cddis2013445.
[46]SIKORA E, BIELAK-ZMIJEWSKA A, MOSIENIAK G. Cellular senescence in ageing, agerelated disease and longevity. Curr Vasc Pharmacol. 2014;12(5):698-706.
[47]LABERGE R M, SUN Y, ORJALO A V, et al. MTOR regulates the pro-tumorigenic senescence-associated secretory phenotype by promoting IL1A translation[J]. Nature Cell Biology, 2015, 17(8): 1049-1061.
[48]LAPLANTE M, SABATINI D M. mTOR signaling in growth control and disease[J]. Cell,2012, 149(2): 274-293.
[49]MARTINEZ-JIMENEZ C P, ELING N, CHEN H C, et al. Aging increases cell-to-cell transcriptional variability upon immune stimulation[J]. Science, 355(6332): 1433-1436.
[50]RYU D, MOUCHIROUD L, ANDREUX P A, et al. Urolithin A induces mitophagy and prolongs lifespan in C. elegans and increases muscle function in rodents[C].Nature Medicine, 2016, 22(8): 879-888.
[51]SOLANAS G, PEIXOTO F O, PERDIGUERO E, et al. Aged Stem Cells Reprogram Their Daily Rhythmic Functions to Adapt to Stress[J]. Cell, 2017, 170(4): 678-692.
[52]KUMAR A, STOICA B A, LOANE D J, et al. Microglial-derived microparticles mediate neuroinflammation after traumatic brain injury[J/OL]. Journal of Neuroinflammation, 2017;14: 47[2018-12-30]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5351060.
[53]STOCKINGER J, MAXWELL N, SHAPIRO D, et al. Caloric restriction mimetics slow aging of neuromuscular synapses and muscle fibers[J]. J Gerontol A Biol Sci Med Sci., 2017, 73(1):21-28.
[54]Harvard Health Publishing. Foods that fight inflammation[EB/OL]. (2018-11-7)[2018-12-30]. https://www.health.harvard.edu/staying-healthy/foods-that-fight-inflammation.
[55]GORDON J R, BRIEVA J C. Images in clinical medicine. Unilateral dermatoheliosis[J/OL]. N Engl J Med 2012, 366(16): e25[2018-12-30]. https://www.nejm.org/doi/10.1056/NEJMicm1104059?url_ver=Z39.88-2003&rfr_id=ori%3Arid%3Acrossref.org&rfr_dat=cr_pub%3Dwww.ncbi.nlm.nih.gov.
[56]FANG M, WANG J, LI S, et al. Advanced glycation end-products accelerate the cardiac aging process through the receptor for advanced glycation end-products/transforming growth factor-β-Smad signaling pathway in cardiac fibroblasts[J]. Geriatrics & Gerontology International, 2016, 16(4): 522-527.
[57]KASSAAR O, PEREIRA MORAIS M, XU S, et al. Macrophage Migration Inhibitory Factor is subjected to glucose modification and oxidation in Alzheimer’ s Disease[J]. Scientific Reports, 2017, 7:42874.
[58]PERRONE L, GRANT W B. Observational and ecological studies of dietary advanced glycation end products in national diets and Alzheimer’ s disease incidence and prevalence[J].Journal of Alzheimer’ s Disease, 2015, 45(3): 965-979.
[59]KRISTIC J, VUCKOVIC F, MENNI C, et al. Glycans Are a Novel Biomarker of Chronological and Biological Ages[J]. J Gerontol A Biol Sci Med Sci, 2014, 69(7): 779-789.