参考文献
[1]郭柏灵,蒲富恪,李邦河.非线性演化方程[M].上海:上海科技教育出版社,1995.
[2]李翊神.孤子与可积系统[M].上海:上海科技教育出版社,1999.
[3]谷超豪.孤立子理论与应用[M].杭州:浙江科学技术出版社,1990.
[4]谷超豪,胡和生.孤立子理论中的达布变换及其几何应用[M].上海:上海科学技术出版社,1999.
[5]楼森岳,唐晓艳.非线性数学物理方法[M].北京:科学出版社,2006.
[6]陈登远.孤子引论[M].北京:科学出版社,2006.
[7]刘式适,刘式达.物理学中的非线性方程(第2版)[M].北京:北京大学出版社,2012.
[8]王振东.孤立波与孤立子[J].力学与实践,2005,27(5):86-88.
[9]闫振亚.复杂非线性波的构造性理论及其应用[M].北京:科学出版社,2007.
[10]Ablowitz M J,Segur H.Solitons and the inverse scattering transform[M].Philadel-phia:Siam,1981.
[11]Ablowitz M J,Clarkson P A.Solitons,nonlinear evolution equations and inverse scattering[M].Cambridge University Press,1991.
[12]Scott R.J.Report on waves [C].Fourteenth meeting of the British Association f'or the Advancement of Science.1844.
[13]Korteweg D J,de Vries G.On the change of form of long waves advancing in a rectangularcanal and on a new type of long stationary waves,Philosophical Magazine.1895,39:422-443.
[14]Fermi E,Pasta J,Ulam S.Studies of nonlinear problems.Los Alamos Report LA-1940,1955.
[15]Zabusky N J,Kruskal M D.Interaction of solitons in a collisionless plasma and the recurrence of initial states[J].Physical Review Letters,1965,15(6):240.
[16]Gardner C S,Greene J M,Kruskal M D,et al.Method for solving the KortewegdeVries equation[J].Physical Review Letters,1967,19(19):1095.
[17]Gel'fand I M,Levitan B M.On the determination of a differential equation from its spectral function[M].Eleven Papers on Topology,Function Theory and Differential Equations.1955.
[18]Lax P D.Integrals of nonlinear equations of' evolution and solitary waves[J].Com- munications on Pure and Applied Mathematics,1968,21(5):467-490.
[19]Zakharov V E,Shabat A B.Exact theory of two-dimensional self-focussing and one-dimensional self-modulating waves in nonlinear media[J].Soviet Physics-JETP(Engl.Transl.),1972,34:62-69.
[20]Ablowitz M J,Kaup D J,Newell A C.The Inverse Scattering Transform-Fourier Analysis f'or Nonlinear Problems[J].Studies in Applied Mathematics,1974,53(4):249-315.
[21]Hirota R.The direc.t method in soliton theory[M].Cambridge University Press.
[22]Hu X B.Nonlinear superposition formulae for the differential-difference analogue of the KdV equation and two-dimensional Toda equation[J].Journal of Physics A Mathematical and General,1994,27(1):201.
[23]Hu X B,Ma W X.Application of' Hirota's bilinear formalism to the Toeplitz lattice-some special soliton-like solutions[J].Physics Letters A,2002,293(3):161-165.
[24]Zhang H Q,Xu T,Li J,et al.Integrability of an N-coupled nonlinear Schrodinger system for polarized optical waves in an isotropic medium via symbolic computa-tion[J].Physical Review E,2008,77(2):026605.
[25]Gao Y T,Tian B.Generalized hyperbolic-function method with computerized symbolic computation to construct the solitonic solutions to nonlinear equations of mathematical physics[J].Computer Physics Communications,2001,133(2):158-164.
[26]Rogers C,Schief W K.Backlund and Darboux transf'ormations:geometry and modern applications in soliton theory[M].Cambridge University Press,2002.
[27]李沿光.Backlund变换理论发展简述及其新方法[J].力学进展,1991,21(4):470-481.
[28]Hu X B,Zhu Z N.A Backlund transformation and nonlinear superposition for-mula for the Belov-Chaltikian lattice[J].Journal of Physics A:Mathematical and General,1998,31(20):4755.
[29]Xue L,Liu Q P.A Supersymmetric.AKNS problem and its Darboux-Backlund transformations and discrete systems[J].Studies in Applied Mathematics,2015,135(1):35-62.
[30]Lou S Y,Hu X,Chen Y.Nonlocal symmetries related to Backlund transformation and their applications[J].Journal of Physics A:Mathematical and Theoretical 2012,45(15):155-209.
[31]Ablowitz M J,Ramani A,Segur H.A c.onnec.tion between nonlinear evolution equations and ordinary differential equations of' P-type.II[J].Journal of Mathe-matical Physics,1980,21(5):1006-1015.
[32]Ablowitz M J,Ramani A,Segur H.A c.onnec.tion between nonlinear evolution equations and ordinary differential equations of' P-type.I[J].Journal of Mathe-matical Physics,1980,21(4):715-721.
[33]Weiss J,Tabor M,Carnevale G.The Painleve property f'or partial differential equations[J].Journal of Mathematical Physics,1983,24(3):522-526.
[34]Jimbo M,Kruskal M D,Miwa T.Painleve test for the self-dual Yang-Mills equa-tion[J].Physics Letters A,1982,92(2):59-60.
[35]Conte R_ Invariant Painleve analysis of partial differential equations[J].Physics Letters A,1989,140(7):383-390.
[36]Pickering A.A new truncation in Painleve analysis[J].Journal of Physics A:Math-ematical and General,1993,26(17):4395.
[37]Lou S.Extended Painleve expansion,nonstandard truncation and special reduc-tions of nonlinear evolution equations[J].Zeitschrift f'ur Naturforschung A,1998,53(5):251-258.
[38]Lie S,Vorlesungen uber Differentialgleichungen Mit Bekannten Infinitesimalen Transf'ormationen(Leipzig:Teaber),1891.
[39]Ovsiannikov L V.Groups and invariant-group solutions of differential equations [J].Doklady Akademii Nauk Sssr,1958,118(3):439-442.
[40]Bluman G W,Cole,J.The general similarity solution of the heat equation[J].Journal of Mathematics and Mechanics,1969,18(11):1025-1042.
[41]Olver P J.Evolution equations possessing infinitely many symmetries[J].Journal of Mathematical Physics,1977,18(6):1212-1215.
[42]Bluman G W,Reid G J,Kumei S.New classes of' symmetries f'or partial differential equations[J].Journal of Mathematical Physics,1988,29(4):806-811.
[43]Bluman G W,Reid G J.New symmetries f'or ordinary differential equations[J].IMA Journal of Applied ma.thematics,1988,40(2):87-94.
[44]Ovsiannikov L V.Group analysis of differential equations[M].Academic Press,1982.
[45]Bluman G W,Cheviakov A,Anco S,Applications of' symmetry methods to partial differential equations [M].Springer,2010.
[46]Bluman G W,Anco,S,Symmetry and integration methods for differential equations [M].Springer,2002.
[47]Bluman G W,Kumei S,Symmetries and differential equations[M].Springer,1989.
[48]Olver P J.Applications of' Lie groups to differential equations[M].Springer,2000.
[49]N.H.Ibragimov(Ed.),CRC Handbook of Lie group analysis of differential equa-tions Vols.1-3[M].CRC Press,Boca Raton,FL,1994.
[50]Hydon P E.Symmetry methods for differential equations:a beginners guide[M].Cambridge University Press,2000.
[51]Clarkson P A,Kruskal M D.New similarity reductions of the Boussinesq equation[J].Journal of Mathematical Physics,1989,30(10):2201-2213.
[52]Lou S Y,Hu X B.Non-local symmetries via Darboux transformations[J].Journal of Physics A:Mathematical and General,1997,30(5):L95.
[53]Lou S Y,Hu X,Chen Y.Nonlocal symmetries related to Backlund transformation and their applications[J].Journal of Physics A:Mathematical and Theoretical 2012,45(15):155-209.
[54]Lou S Y.Consistent Riccati expansion for integrable systems[J].Studies in Applied Mathematics,2015,134(3):372-402.
[55]Xin X P,Chen Y.A method to construct the nonlocal symmetries of nonlinear evolution equations[J].Chinese Physics Letters,2013,30:100-202.
[56]陈登远,朱国城,李翊神.AKNS型矩阵发展方程的新对称及其Lie代数[J].数学年刊A辑(中文版),1991,1:005.
[57]田畴.李群及其在微分方程中的应用[M].北京:科学出版社,2001.
[58]Ma W X.Extension of hereditary symmetry operators[J].Journal of Physics A:Mathematical and General,1998,31(35):7279.
[59]Qu C.Group classification and generalized conditional symmetry reduction of the nonlinear diffusion-convection equation with a nonlinear source[J].Studies in Applied Mathematics,1997,99(2):107-136.
[60]Vinogradov A M,Krasilshchik I S.A method for computing higher symmetries of nonlinear evolutionary equations and nonlocal symmetries[J].Akademiia Nauk SSSR Doklady.1980,253:1289-1293.
[61]Noether E.Invariante Variationsprobleme[J].Gott Nachr,1918:235-257.
[62]Steudel H.IJber der Zuordnung zwischen Invarianzeigenschaften und Erhaltungssatzen[J].Zeitschrift fur Naturforschung A,1962,17(2):129-132.
[63]Struktur der Invarianzgruppe fur lineare Feldtheorien[J].Zeitschrift fur Naturforschung A,1966,21(11):1826-1828.
[64]Boyer T H.Continuous symmetries and conserved currents[J].Annals of Physics1967,42(3):445-466.
[65]Benjamin T B,Olver P J.Hamiltonian structure,symmetries and conservation laws for water waves[J].Journal of Fluid Mechanics,1982,125:137-185.
[66]Anco S C,Bluman G W.Derivation of' conservation laws f'rom nonlocal symmetries of differential equations[J].Journal of Mathematical Physics,1996,37(5):2361-2375.
[67]Anco S C,Bluman G W.Direc.t construction of' conservation laws from field equations[J].Physical Review Letters,1997,78(15):2869.
[68]Ibragimov N H,Kara A H,Mahomed F M.Lie-Backlund and Noether symmetries with applications[J].Nonlinear Dynamics,1998,15(2):115-136.
[69]Anco S C,Bluman G W.Direct construction method for conservation laws of partial differential equations Part I:Examples of conservation law classifications [J].European Journal of Applied Mathematics,2002,13(05):545-566.
[70]Anco S C,Bluman G W.Direct construction method for conservation laws of partial differential equations Part II:General treatment[J].European Journal of Applied Mathematics,2002,13(05):567-585.
[71]Kara A H,Mahomed F M.Noether-type symmetries and conservation laws via partial Lagrangians[J].Nonlinear Dynamics,2006,45(3-4):367-383.
[72]Ibragimov N H.A new conservation theorem[J].Journal of Mathematical Analysis and Applications,2007,333(1):311-328.
[73]Denschlag J,Simsarian J E,Feder D L,et al.Generating solitons by phase engi-neering of' a Bose-Einstein condensate[J].Science,2000,287(5450):97-101.
[74]Eiermann B,Anker T,Albiez M,et al.Bright Bose-Einstein gap solitons of atoms with repulsive interaction[J].Physical Review Letters,2004,92(23):230-401.
[75]Stegeman G I,Segev M.Optical spatial solitons and their interactions:umversality and diversity[J].Science,1999,286(5444):1518-1523.
[76]Strecker K E,Partridge G B,Truscott A G,et al.Formation and propagation of'matter-wave soliton trains[J].Nature,2002,417(6885):150-153.
[77]Belmonte-Beitia J,Perez-Garcia V M,Vekslerchik V,et al.Lie symmetries and solitons in nonlinear systems with spatially inhomogeneous nonlinearities [J].Phys- ical Review Letters,2007,98(6):064-102.
[78]Belmonte-Beitia J,Calvo G F.Exact solutions for the quintic.nonlinear Schrodinger equation with time and space modulated nonlinearities and poten-tials[J].Physics Letters A,2009,373(4):448-453.
[79]Belmonte-Beitia J.Exact solutions for the quintic nonlinear Schrodinger equation with inhomogeneous nonlinearity[J].Chaos,Solitons and Fractals,2009,41(2):1005-1009.
[80]Bluman G,Shtelen V.New classes of Schrodinger equations equivalent to the free particle equation through non-local transformations[J].Journal of Physics A:Mathematical and General,1996,29(15):4473-4480.
[81]Popovych R O,Kunzinger M,Eshraghi H.Admissible transformations and nor-malized classes of nonlinear Schrodinger equations[J].Acta Applicandae Mathe-maticae,2010,109(2):315-359.
[82]Kurujyibwami C.Equivalence groupoid for(1+2)-dimensional linear Schrodinger equations with complex potentials[C].Journal of Physics:Conference Series.IOP Publishing,2015,621(1):012008.
[83]Dai C Q,Huang W H.Controllable mechanism of breathers in the(2+1)-dimensional nonlinear Schrodinger equation with different forms of distributed transverse diffraction[J].Physics Letters A,2014,378(16):1113-1118.
[84]Dai C,Zhang J.Exact spatial similaritons and rogons in 2D graded-index waveg-uides[J].Optics Letters,2010,35(15):2651-2653.
[85]Anco S C,Bluman G W.Nonlocal symmetries and nonlocal conservation laws of Maxwell' s equations[J].Journal of Mathematical Physics,1997,38(7):3508-3532.
[86]Cheviakov A F,Bluman G W.Multidimensional partial differential equation systems:Generating new systems via conservation laws,potentials,gauges,subsystems[J].Journal of Mathematical Physics,2010,51(10):103521.
[87]Gerdjikov V,Vilasi G,Yanovski A B.Integrable hamiltonian hierarchies:Spectral and geometric.methods[M].Springer,2008.
[88]Kudryashov N A,Sinelshchikov D I.Exact solutions of' equations for the Burgers hierarchy[J].Applied Mathematics and Computation,2009,215(3):1293-1300.
[89]Kudryashov N A.Self-similar solutions of the Burgers hierarchy [J].Applied mathematics and computation,2009,215(5):1990-1993.
[90]Wazwaz A M.Burgers hierarchy:multiple kink solutions and multiple singular kink solutions[J].Journal of the Franklin Institute,2010,347(3):618-626.
[91]Liu H.Painleve test,generalized symmetries,Backlund transformations and exact solutions to the third-order Burgers' equations[J].Journal of Statistical Physics,2015,158(2):433-446.
[92]Fokas A S,Luo L.On the asymptotic integrability of a generalized Burgers equation[J].Contemporary Mathematics,1996,200:85-98.
[93]Fuchssteiner B,Fokas A S.Symplectic structures,their Backlund transformations and hereditary symmetries[J].Physica D:Nonlinear Phenomena,1981,4(1):47-66.
[94]Kudryashov N A,Sinelshchikov D I.Analytical and numerical studying of the perturbed Korteweg-de Vries equation[J].Journal of Mathematical Physics,2014,55(10):103504.
[95]Bluman G W,Kumei S.Symmetry-based algorithms to relate partial differential equations:I.Local symmetries[J].European Journal of Applied Mathematics,1990,1(03):189-216.
[96]Bluman G W,Kumei S.Symmetry-based algorithms to relate partial differen-tial equations:II.Linearization by nonlocal symmetries[J].European Journal of Applied Mathematics,1990,1(03):217-223.
[97]Burgers J M.Application of' a model system to illustrate some points of the sta-tistical theory of' f'ree turbulence[C]..Proceedings of the Nederlandse Akademie van Wetenschappen,Amsterdam.1940,43:2-12.
[98]Wang G,Kara A H,Fakhar K.Nonlocal symmetry analysis and conservation laws to an third-order Burgers equation[J].Nonlinear Dynamics,2016,83(4):2281-2292.
[99]Wang G,Kara A H.Nonlocal symmetry analysis,explicit solutions and conservation laws for the fourth-order Burgers ' equation[J].Chaos Solitons and Fyactals,2015,81:290-298.
[100]Ibragimov N H.Integrating f'actors,adjoint equations and Lagrangians[J].Journal of Mathematical Analysis and Applications,2006,318(2):742-757.
[101]El-Bedwehy N A,Moslem W M.Zakharov-Kuznetsov-Burgers equation in superthermal electron-positron-ion plasma[J].Astrophysics and Space Science,2011,335(2):435-442.
[102]Masood W,Rizvi H,Siddiq M.Obliquely propagating nonlinear structures in dense dissipative electron positron ion magnetoplasmas [J].Astrophysics and Space Science,2012,337(2):629-635.
[103]Zakharov V E,Kuznetsov E A.Three-dimensional solitons[J].Zhurnal Eksperi-mentalnoi I Teroreticheskoi Fiziki,1974,29(66):594-597.
[104]Wazwaz A M.Solitary waves solutions f'or extended forms of quantum Zakharov-Kuznetsov equations[J].Physica Scripta,2012,85(2):025006.
[105]Ostrovsky L A,Grue J.Evolution equations f'or strongly nonlinear internal waves[J].Physics of Fluids,2003,15(10):2934-2948.
[106]Moslem W M,Ali S,Shukla P K,et al.Solitary,explosive,and periodic solutions of the quantum Zakharov-Kuznetsov equation and its transverse instability[J].Physics of Plasmas,2007,14(8):082308.
[107]Khan S A,Masood W.Linear and nonlinear quantum ion-acoustic waves in dense magnetized electron-positron-ion plasmas[J].Physics of' Plasmas(1994-present),2008,15(6):062301.
[108]Wazwaz A M.The extended tanh method for the Zakharov-Kuznetsov(ZK)the modified ZK equation,and its generalized forms[J].Communications in Nonlinear Science and Numerical Simulation,2008,13(6):1039-1047.
[109]Wang G,Fakhar K.Lie symmetry analysis,nonlinear self-adjointness and conservation laws to an extended(2+1)-dimensional Zakharov-Kuznetsov-Burgers equation[J].Computers and Fluids,2015,119:143-148.
[110]Wang G W,Xu T Z,Johnson S,et al.Solitons and Lie group analysis to an extended quantum Zakharov-Kuznetsov equation[J].Astrophysics and Space Science,2014,349(1):317-327.
[111]Jaulent M,Miodek I.Nonlinear evolution equations associated with energy-dependent Schrodinger potentials' [J].Letters in Mathematical Physics,1976,1(3):243-250.
[112]Guerrero F G,Alonso L M.Hamiltonian formulation for the Jaulent-Miodek family of nonlinear evolution equations[J].Lettere Al Nuovo Cimento(1971-1985),1980,27(1):28-31.
[113]Laddomada C,Gui-Zhang T.B" acklund transformations for the Jaulent-Miodek equations[J].Letters in Mathematical Physics,1982,6(6):453-462.
[114]Ganji D D,Jannatabadi M,Mohseni E.Application of He's variational iteration method to nonlinear Jaulent-Miodek equations and comparing it with ADM[J].Journal of Computational and Applied Mathematics,2007,207(1):35-45.
[115]Kara A H.A symmetry invariance analysis of the multipliers and conservation laws of the Jaulent-Miodek and some families of' systems of KdV type equations[J].Journal of Nonlinear Mathematical Physics,2009,16(-supp01):149-156.
[116]Liu D Y,Tian B,Jiang Y,et al.Soliton solutions and B"acklund transformations of a(2+1)-dimensional nonlinear evolution equation via the Jaulent-Miodek hierarchy[J].Nonlinear Dynamics,2014,78(4):2341-2347.
[117]Krishnan E V,Triki H,Labidi M,et al.A study of shallow water waves with Gardner' s equation[J].Nonlinear Dynamics,2011,66(4):497-507.
[118]Smaoui N,Al-Jamal R H.Boundary control of the generalized Korteweg-de Vries-Burgers equation[J].Nonlinear Dynamics,2008,51(3):439-446.
[119]Kara A H,Mahomed F M.Relationship between Symmetries and Conservation Laws[J].International Journal of Theoretical Physics,2000,39(1):23-40.
[120]Kara A H,Mahomed F M.A basis of conservation laws for partial differential equations[J].Journal of Nonlinear Mathematical Physics,2002,9(sup2):60-72.
[121]Euler N,Euler M.()n nonlocal symmetries,nonlocal conservation laws and nonlocal transformations of evolution equations:Two linearisable hierarchies[J].of Nonlinear Mathematical Physics,2009,16(04):489-504.
[122]Zhou Z.Finite dimensional Hamiltonians and almost-periodic solutions f'or(2+1)-dimensional three-wave equations[J].Journal of the Physical Society of' Japan,2002,71(8):1857-1863.
[123]Latha M M,Vasanthi C C.An integrable model of(2+1)-dimensional Heisenberg ferromagnetic spin chain and soliton excitations[J].Physica Scripta,2014,89(6):065204.
[124]Gazizov R K,Kasatkin A A,Lukashchuk S Y.Continuous transformation groups of' f'ractional differential equations[J].Vestnik Usatu,2007,9(3):21.
[125]Buckwar E,Luchko Y.Invariance of' a partial differential equation of fractional of scaling transformations [J].Journal of Mathematical Analysis and Applications,1998,227(1):81-97.
[126]Djordjevic V D,Atanackovic T M.Similarity solutions to nonlinear heat conduc-tion and Burgers/Korteweg-deVries fractional equations[J].Journal of Computa-tional and Applied Mathematics,2008,222(2):701-714.
[127]Gazizov R K,Kasatkin A A,Lukashchuk S Y.Symmetry properties of fractional diffusion equations[J].Physica Scripta,2009,2009(T136):014016.
[128]Sahadevan R,Bakkyaraj T.Invariant analysis of' time fractional generalized Burgers and Korteweg-de Vries equations[J].Journal of Mathematical Analysis and Applications,2012,393(2):341-347.
[129]Wang G W,Liu X Q,Zhang Y Y.Lie symmetry analysis to the time fractional generalized fifth-order KdV equation[J].Commumcations in Nonlinear Science and Numerical Simulation,2013,18(9):2321-2326.
[130]Wang G W,Xu T Z.Invariant analysis and exact solutions of nonlinear time fractional Sharma-Tasso-Olver equation by Lie group analysis[J].Nonlinear Dynamics,2014,76(1):571-580.
[131]Hu J,Ye Y,Shen S,et al.Lie symmetry analysis of the time fractional KdVtype equation[J].Applied Mathematics and Computation,2014,233:439-444.
[132]Lukashchuk S Y.Conservation laws for time-fractional subdiffusion and diffusion-equations[J].Nonlinear Dynamics,2015,80(1-2):791-802.
[133]Huang Q,Zhdanov R.Symmetries and exact solutions of the time fractional Harry-Dym equation with Riemann-Liouville derivative[J].Physica A:Statistical Mechanics and its Applications,2014,409:110-118.
[134]Rosenau P.()n nonanalytic solitary waves formed by a nonlinear dispersion[J].Physics letters A,1997,230(5):305-318.
[135]Rosenau P.Compact and noncompact dispersive patterns[J].Physics Letters A.2000,275(3):193-203.
[136]Rosenau P.On a model equation of traveling and stationary compactons[J].Physics Letters A,2006,356(1):44-50.
[137]Charalambous K,Sophocleous C.Symmetry analysis for a class of nonlinear dispersive equations[J].Communications in Nonlinear Science and Numerical Simu-lation,2015,22(1):1275-1287.
[138]Kiryakova V S.Generalized fractional calculus and applications[M].CRC Press,1993.
[139]Mainardi F.Fractional calculus and waves in linear viscoelasticity:an introduc-tion to mathematical models[M].World Scientific,2010.
[140]Podlubny I.Fractional differential equations:an introduction to fractional derivatives,fractional differential equations,to methods of their solution and some of their applications [M].Academic press,1998.
[141]Gazizov R K,Ibragimov N H,Lukashchuk S Y.Nonlinear self-adjointness,conservation laws and exact solutions of time-fractional Kompaneets equations[J].Communications in Nonlinear Science and Numerical Simulation,2015,23(1):153-163.