5.1.2 水库优化调度研究综述
水库常规调度以调度规则为依据,利用径流调节理论和水能计算方法来确定满足水库既定任务的蓄泄过程。常规调度虽然简单、直观,但调度结果不一定最优,而且不便于处理复杂的水库调度问题。优化调度则是以运筹学(或称系统工程学)为理论基础,建立以水库为中心的水利水电系统的目标函数,拟定其应满足的约束条件,然后用现代计算技术和最优化方法求解由目标函数和约束条件组成的系统方程组,寻求满足调度原则的最优调度方式或方案。该方案可在保护水库安全可靠的条件下,解决各用水部门之间的矛盾,满足其基本要求,并能经济合理地利用水资源及水能资源,以获得最大的综合利用效益。优化调度是近50年来得到较快发展的一种水库调度方法,是在常规调度和系统工程的一些优化理论及其技术基础上发展起来的。
5.1.2.1 单一水库优化调度
早在20世纪40年代Masse就提出了水库优化调度问题,但直到20世纪50年代,系统分析、优化模型的引入以及计算机技术的发展才使得水库调度问题在理论和应用研究上取得了长足的进展。Little,J.D.C.(1955)采用马氏过程原理建立的水库调度随机动态规划模型是水库优化调度开创性的研究成果。20世纪六七十年代初期,国外陆续发表的研究成果表明单一水库优化调度的马氏决策规划模型已日趋完善。Howard,R.A.(1960)提出了动态规划与马尔科夫过程理论(MDP),使水库优化调度从理论上得到了进一步完善,解决了以前模型很难达到多年期望效益最大和满足水库系统可靠性要求的理论性缺陷。Loucks等(1970)提出无折扣、马氏决策规划模型的策略迭代法。Aslew(1974)用概率约束代替机会约束进行随机模型研究。Rossman.L(1977)将Lagrange乘子理论用于随机约束问题的动态规划解,使破坏的期望值被约束在一个常数以下。Young.G.K(1967)研究了确定性来水条件下的水库优化调度动态规划法。Hall.W.A和Shephard.R.W.(1967)用确定性动态规划法对美国加里福尼亚州的Shasta电站进行优化计算,获得了较为满意的效果。
我国开展单一水库优化调度的研究与应用始于20世纪60年代。吴仓浦(1960)首次提出了年调节水库的最优运用动态规划(DP)模型。谭维炎、黄守信(1963)根据动态规划与Markov过程理论,建立了一个长期调节水电站水库的优化调度模型,并在狮子滩水电站的优化调度中得到应用。张勇传、熊斯毅等(1979)在建立柘溪水电站水库优化调度模型时,用时空离散简单Markov过程描述径流过程,面临时段入流则由短期预报提供,寻优方法采用可变方向探索法,虽然绘制优化调度图仍用Bellman最优化原理,但由于引进了惩罚项,因而提高了调度图的可靠性。同年,董子敖等人(1979)在研究刘家峡水电站水库优化调度时,提出了国民经济效益最大的目标函数,在寻优技术方面,采用了满足保证率要求的改变约束法,以控制破坏深度。施熙灿、林翔岳等(1982)在研究枫树坝水电站优化调度时,提出了保证率约束下的Markov决策规划模型。张勇传、傅昭阳等人(1983)提出了建立在对策论基础上的水库优化调度图。鲁子林等(1983)应用增量动态规划,并结合短期洪水预报模型,实施了富春江水电站的优化调度,获得了平均每年增发电能2470万kW·h的效益。王厥谋等(1985)为对汉江中、下游洪水进行最优控制,建立了丹江口水库防洪优化调度模型,目标函数为各种控制目标的罚函数之和,最优策略的求解方法采用线性规划法。李寿声、彭世彰等(1986)结合一些地区水库调度的实际问题,拟订了一个非线性规划模型和多维动态规划模型,用于解决满足多种水源分配的水库最优引水量问题。张玉新、冯尚友(1986)建立了一个多维决策的多目标动态规划模型,以多目标中某一目标为基本目标,而将其他非基本目标作为状态变量处理,求解方法仍基于一般的动态规划原理。该法实质上是单目标动态规划法在多目标问题中的应用,因此随着维数的增加,计算工作量增加较多。为克服这一问题,张玉新、冯尚友(1988)又提出了一个称之为多目标动态规划迭代法的求解方法,其核心是构造一个三级段函数,计算效率有所提高,在研究以发电量和淤沙量为目标的水沙联合优化调度中,用该法求出非劣解集后再应用均衡规划法选出满意的调度方案。
5.1.2.2 水库群优化调度
随着水资源和水电能源的不断开发利用,水库群已成为最常见的水利水电系统。水库群优化调度虽以单一水库优化调度的理论和方法为基础,但也不断有新的方法出现。Turgeon.A(1981)运用随机动态规划和逼近法解决了并联水库群水力发电系统的优化问题。Saad等(1988)在水库调度过程中,首先对系统进行主成分分析(PCA),寻求一个降维模型,然后使用随机动态规划对降维模型进行求解,这种方法被用在加拿大魁北克省的LaGrande河的一个5水库系统。Foufoula等(1988)提出了一个梯度动态规划算法(GDP),可以有效减少由于水库数目增加造成的“维数灾”。Karamouz等(1992)提出了一个贝叶斯随机动态规划(BSDP)。Oliveira等(1997)使用遗传算法生成水库群系统的调度规则等。
我国关于水库群优化调度的研究则开始于20世纪80年代初。当时谭维炎、刘健民等人在研究四川水电站水库群优化调度图和计算方法时,提出了考虑保证率约束的优化调度图的递推计算方法。张勇传(1981)利用大系统分解协调的观点,对两并联水电站水库的联合优化调度问题进行了研究,先把两库联合问题变成两个水库的单库优化问题,然后在单库最优策略的基础上引入偏优损失最小作为目标函数,对单库最优策略进行协调,以求得总体最优。熊斯毅、邴凤山(1982)根据系统分析思想,提出了水库群优化调度的偏离损失系数法,该法采用Markov模型描述径流过程,偏离损失系数是通过逐时段求解最优递推方程求得的,因此能反映面临时段效益和余留期影响,不仅形式简单、使用方便,而且理论上比较完善,该法在湖南柘溪—凤滩水电站水库群的最优调度中得到了应用。叶秉如等(1982)提出了并联水电站水库群年最优调度的动态解析法,该法以古典优化法为基础,结合递推增优计算,在闽北水电站水库群优化调度的模拟计算中,可增加发电量6.6%。黄守信、方淑秀等(1982)提出了以单库优化为基础的两库轮流寻优法,用于并联水库群的优化调度计算。鲁子林(1983)将网络分析中的最小费用法用于水电站水库群的优化调度。董子敖等(1986)提出了计入径流时空相关关系的多目标多层次优化法,基本思想是:采用分区推求条件频率曲线和隐相关相结合的方法计入径流的时空相关关系,把一维动态规划逐步逼近法用于二维状态,并采用参数迭代法实现降维求单目标次优解,以克服“维数灾”障碍。叶秉如等(1988)提出了一种空间分解算法,并将多次动态规划法和空间分解法分别用于研究红水河梯级水电站水库群的优化调度问题。胡振鹏、冯尚友(1988)提出了动态大系统多目标递阶分析的分解—聚合方法,将库群多年运行的整体优化问题分解为按时间划分的一系列运行子系统,在各子系统优化的基础上,将各水库提供的年内运行策略聚合成上一级系统,并由聚合模型描述和确定水库群的多年运行过程和策略,该法为解决跨流域供水水库群联合运行中多库、多目标、多层次、调节周期长和计算时段多等复杂情况提供了有效方法,在解决丹江口水库防洪与兴利两个目标的优化调度时也应用了该法。吴保生等(1991)提出了并联防洪系统优化调度的多阶段逐次优化算法,该法由三阶段子模型和跨阶段子模型组成,以时间向后截取的防洪控制点过程的峰值最小为目标函数,成功地解决了河道水流状态的滞后影响。都金康等(1994)针对上述吴保生等提出的方法寻优速度较慢的缺点,提出了一种简便高效的水库群防洪调度逐次优化方法。方晓东(1995)采用二元动态规划法求解3库4电站的水电站库群的优化调度问题,试图克服传统动态规划法求解多阶段问题时遇到的“维数灾”问题。万俊等(1996)提出了分解协调—聚合分解的构模思路并建立了求解水电站群的复合模型。黄强等(1987)将大系统分解协调算法应用在黄河干流水库联合调度中。周晓阳(2000)提出水库系统的辨识型优化调度方法,将实际调度问题描述为一个包括被测系统和调度模型组成的辨识系统。台湾海洋大学的黄文政教授(2002)用随机动态规划与遗传算法相结合求解了两并联水库的优化调度问题。
1965年美国控制论专家Zadeh创立了模糊数学,Bellman和Zadeh(1970)又共同提出了融经典动态规划技术与模糊集合论于一体的模糊动态规划法,为水库优化调度开辟了一条新途径。我国张勇传院士等(1984)把模糊等价聚类、模糊映射和模糊决策等引入水库优化调度的研究。陈守煜(1988)提出多目标、多阶段模糊优选模型的基本原理和解法,把动态规划和模糊优选有机结合起来。同年,陈守煜等(1988)又提出了系统层次分析模糊优选模型。这些研究成果为水库模糊优化调度的深入研究奠定了理论基础。王本德等(1994)提出了梯级水库群防洪系统多目标洪水调度的模糊优选模型,该模型分别在丰满—白山梯级防洪系统和清河—南城子—柴河串并联水库群防洪系统的优化调度中得到应用。谢新民和陈守煜等(1995)利用大系统理论、模糊数学规划理论和动态规划技术,提出一种水电站水库群模糊优化调度模型与目标协调—模糊规划法,该模型可以充分地考虑人的知识、经验和决策过程中所存在的模糊性因素对水库调度的影响,并较好地解决了大规模水库群优化调度计算问题。王本德等(1999)总结了水库调度模糊优化方法理论,提出了梯级水库群防洪系统多目标洪水调度的模糊优选模型。
从上述有关国内外水库调度的研究现状可以看出,水库调度对径流的处理分确定型和随机型两大类。确定型由于采用未来径流为已知的确定时序过程的假定,使得优化成果偏大,从国内外几个例子的对比看,偏大比例可达百分之几至百分之十几,且计算成果在实际运行中往往难以实现,只有在规划阶段对十分庞大的计算方案进行简化计算时才有一定的价值,但它可以求解十库以上的规模;随机型是用随机过程描述径流,它与实际比较吻合,理论上也比较完善,充分利用了已获得的长系列径流资料中所反映的信息,但存在“维数灾”的困难。