参考文献
[1]袁婺洲.基因工程[M].2版.北京:化学工业出版社,2019.
[2]常重杰.基因工程[M].北京:科学出版社,2012.
[3]刘志国.基因工程原理与技术[M].3版.北京:化学工业出版社,2016.
[4]孙明.基因工程[M].北京:高等教育出版社,2006.
[5]张文庆,王桂.RNA干扰:从基因功能到生物农药[M].北京:科学出版社,2021.
[6]周维,付喜爱,张德显,等.基因敲除技术的研究进展[J].中国兽医杂志,2015,51(3):67-68.
[7]王超玄,孙航.基因敲除小鼠技术的研究进展[J].生物工程学报,2019,35(5):784-794.
[8]夏伟,沈旋,李彤彤,等.PAICS基因促进乳腺癌细胞生长及其可能分子机制[J].黑龙江医药科学,2021,44(4):36-39.
[9]孙红,侯佳林,蔡加琴,等.利用Cre/loxP系统构建乳腺细胞特异性敲除SENP7基因的小鼠模型[J].中国临床药理学与治疗学,2021,26(4):376-381.
[10]孔维健,常宇鑫,昝春芳,等.基于Cre-loxP系统条件性基因敲除小鼠的构建及其应用进展[J].中国实验诊断学,2017,21(12):2208-2211.
[11]叶善元,郝君颖,李洪强,等.小干扰RNA的作用机制及其在肿瘤研究中的应用[J].甘肃医药,2020,39(12):1067-1071.
[12]李春辉,胡泊,翁郁华,等.基因治疗的现状与临床研究进展[J].生命科学仪器,2019,17:3-12.
[13]周晓楠,宋雪兰,杨媛,等.基因沉默策略及其应用研究进展[J].昆明医科大学学报,2018,39(1):131-135.
[14]钟焱.RNA干扰在肿瘤基因研究中的应用进展[J].生物技术世界,2016,4:9-12.
[15]韩伟,魏丰贤,张有成.小干扰RNA沉默甲胎蛋白基因对HepG2细胞迁移及侵袭的影响[J].临床肝胆病杂志,2021,37(8):1873-1877.
[16]李龙钦.胚胎干细胞抑制小鼠肝癌实验研究[D].福州:福建医科大学,2017.
[17]费佳燕.过量表达GAD系统关键基因提升乳酸乳球菌γ-氨基丁酸生产性能[D].杭州:浙江大学,2016.
[18]蒋丹,薛颢颖,王苏,等.Betatrophin重组腺病毒过表达载体的构建[J].江苏大学学报,2016,26(2):124-131.
[19]胡建斌,余文戈.人源Tim-1基因过表达载体的构建与鉴定[J].中国卫生检验杂志,2021,31(12):1487-1489.
[20]李春峰,夏庆友,周泽扬.GAL4/UAS系统在转基因技术中的应用研究进展[J].临床肝胆病杂志,2006,16(1):78-81.
[21]刘玉万.一种增强基因表达的自激活GAL4/UAS系统表达盒的建立[D].西安:西北农林科技大学,2017.
[22]刘耀光,李构思,张雅玲,等.CRISPR/Cas植物基因组编辑技术研究进展[J].华南农业大学学报,2019,40(5):38-49.
[23]张梦娜,柯丽萍,孙玉强.基因编辑新技术最新进展[J].中国细胞生物学学报,2018,40(12):2098-2107.
[24]冯江浩,魏思昂,闫丽欢,等.CRISPR/Cas9基因编辑技术及应用研究概述[J].动物医学进展,2021,42(3):123-126.
[25]Sabine Brantl.Antisense-RNA regulation and RNA interference[J].Biochimica et Biophysica Acta,2002,1575(1-3):15-25.
[26]Maxime Blijlevens,Ida H van der Meulen-Muileman,Renee X de Menezes,et al.High-throughput RNAi screening reveals cancer-selective lethal targets in the RNA spliceosome[J].Oncogene,2019,38:4142-4153.
[27]Yaqing Li,Xiaoran Li,Xiaoli Li,et al.PDHA1 gene knockout in prostate cancer cells results in metabolic reprogramming towards greater glutamine dependence[J].Oncotarget,2016,7(33):53837-53852.
[28]Mahfouz M M.Genome editing:The efficient tool CRISPR-Cpfl[J].Nat Plants,2017,3:17028.
[29]Zaidi S S,Mahfouz M M,Mansoor S.CRISPR/Cpf1:A new tool for plant genome editing[J].Trends Plant Sci,2017,22(7):550-553.
[30]Ma X L,Chen L T,Zhu Q L,et al.Rapid decoding of sequence-specific nucleaseinduced heterozygous and biallelic mutations by direct sequencing of PCR products[J].Mol Plant,2015,8(8):1285-1287.
[31]Liu W Z,Xie X R,Ma X L,et al.DSDecode:A web-based tool for decoding of sequencing chromatograms for genotyping of targeted mutations[J].Mol Plant,2015,8(9):1431-1433.
[32]Xie X R,Ma X L,Zhu Q L,et al.CRISPR-GE:A convenient software toolkit for CRISPR-based genome editing[J].Mol Plant,2017,10(9):1246-1249.
[33]Xue L J,Tsai C J.AGEseq:Analysis of genome editing by sequencing[J].Mol Plant,2015,8(9):1428-1430.
[34]Park J,Lim K,Kim J S,et al.Cas-analyzer:An online tool for assessing genome editing results using NGS data[J].Bioinformatics,2017,33(2):286-288.
[35]Bao X R,Pan Y,Lee C M.et al.Tools for experimental and computational analyses of off-target editing by programmable nucleases[J].Nat Protoc,2021,16(1):10-26.
[36]Pinello L,Canver M C,Hoban M D,et al.Analyzing CRISPR genome-editing experiments with CRISPResso[J].Nat Biotechnol,2016,34(7):695-697.
[37]Lloyd A,Plaisier C L,Carroll D,et al.Targeted mutagenesis using zinc-finger nucleases in Arabidopsis[J].Proc Natl Acad Sci USA,2005,102(6):2232-2237.
[38]Liu Q,Wang C,Jiao X,et al.Hi-TOM:A platform for high-throughput tracking of mutations induced by CRISPR/Cas systems[J].Sci China Life Sci,2019,62(1):1-7.
[39]Puchta H.Using CRISPR/Cas in three dimensions:Towards synthetic plant genomes,transcriptomes and epigenomes[J].Plant J,2016,87(1):5-15.
[40]Rodriguez-Leal D,Lemmon Z H,Man J,et al.Engineering quantitative trait variation for crop improvement by genome editing[J].Cell,2017,171(2):470-480.
[41]Komor A C,Kim Y B,Packer M S,et al.Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage[J].Nature,2016,533(7603):420-424.