REFERENCES
[1]X.D.Huang,Y.Anki,and M.A.Jack.Hidden Markov models For Speech RecogniEion[M].Edinburgh University Press,1990.
[2]Duda,R.O.and Harc.P.E.Pattem classification and scene analysis[M].John Wiley & Sons,1973.
[3]L.R.Rabiner and B.H.Juang.Fundamentals of speech recognition.Prentice Hall PTR,1993.
[4]Y Linde,A.Buzo,& R M.Gray.An algorithm for vector quantisation[J].IEEE Trans.Comm.,1980,no.28,pp.84-95.
[5]D.A.Reynolds.A Gaussian Mixture Modeling Approach to Text-Independent Speaker Identificalion[D].PhD thesis,1993.
[6]L.R.Rabiner,and B.H.Juang.An introduaion to hidden Markov models[J].IEEE Acoustic,Speech,and Signal Processing Society Mag.,1986 vol.3,no.1,pp.4-16.
[7]A.P.Dempster,N.M.Laird,and D.B.Rubin.Maximum Likelmood from Incomplete Data via the EM algorithm[J].Journal of the Royal Statistical Society,Ser.B,1977 vol.39,pp.1-38.
[8]C.F.J.Wu.On the convergence properties of the EM algorirhm[J].Arm.Statist.1983 vol.11.pp.5-103.
[9]J.Dunn.A fuzzy rejative of the ISODATA process and its use in detecting compact well-separated cluster[J].J.Cybenzetics,vol.3,pp.32-57,1974.
[10]James C.Bezdek.Pattern Recognition with Fuzzy Objecrive Function Algorithms[M].Plenum Press,New York and London,1987.
[11]D.E.Gustafson,and W.Kessel.Fuzzy clustering with a fuuy covariance matrix[J].in Proc.IEEE-CDC,v01.2(K.S.Fu,ed.),pp.761-766.
[12]I.Gath and A.B.Geva.Unsupervised optimal fuzzy clustering.IEEE Trans.on Patt.Anal.& Mac.Intel.,vol.11,no.7,pp.773-781,1989.
[13]R.Hathaway.Another interpretation of the EM ajgorithm for mixture dislribution[J].Journal of Statistics & Probability letters,vol.4,pp.53-56.
[14]C.Ambroise,M.Dang and G.Govaert.Clustering of spatial data by the EM algorithm[J].In A.Soares,J.Gomez-Hernandez and R.Froidevaux,eds,geoENV I-Geostatistics for Enviromnemal Applications,Quantitative Geology and Geostatistics,Kluwer Academic Publisher.vol.9,pp.493-504,1997.
[15]Dat Tran and Michael Wagner.Fuzzy Expecration-Maximisation Algorithms for Speech and Speaker Recognition[C].The International Conference of the North American Fuzzy Information Processing Society(NAFIPS),USA.1999(to appear).
[16]Dat Tran and Michael Wagner.Fuzzy Hidden Markov Models For Speech and Speaker Recognition[C].The International Conference of the North American Fuzzy Information Processing Society(NAFIPS).USA,1999.(to appear).
[17]Dat Tran,T.Van Le and Michael Wagner.Fuzzy Gaussian mixture models for speaker recognition[C].In Proc.Int.Conf.Spoken Language Processing(ICSLP),1998 vol.2,pp.759-762.
[18]Dat Tran and Michael Wagner.Fuzzy Approach to Gaussian Mixture Models and Generalised Gaussian Mixtvre Models.International Computer Science Conventions(ICSC)USA,1999(to appear).
[19]Dat Tran and Michael Wagner.Fuzzy Gaussian Mixture Models for Speaker Recognition[J].In a special issue of the Australian Journal of Intelligent Information Processing Systems(AJIIPS).1999,Australia(to appear).
[20]R.N.Dave.Characterizatlon and detection of noise in clustering[J].Pattern Recognition Letters,1991 vol.12,no.1 1,pp.657-664.
[21]Dat Tran and Michael Wagner.Hidden Markov Modelsusing Fuzzy Estimation[C].EUROSPEECH'99 Conference,Hungary,1999(to appear).
[22]Dat Tran and Michael Wagner.Speaker recognition using fuzzy Gaussian mixture models in noisy data[C].The Third International Conference on Knowledge-Based Intelligent Information Engineering Systems(KES'99)-Adelaide,Auslralia,1999(submitted).
[23]R.N.Dave and R.Krishnaputam.Robust clustering methods:a unified view[J].IEEE Trans.Fuzzy Systems.1997 vol.5,no.2,May.
[24]T.Matsui and S.Furui.Concatenated Phoneme models for text-variable speaker recognition[J].Proc.IEEE Int.Conf.Acoust.Speech,Signal Processing,1993 pp.IJ-391-394.
(In Proceedings of the FUZZY-IEEE 1999 Conference,vol.3,PP.1275-1280,1999,with Dat Tran,Michael Wagner)