核裂变的发现

核裂变的发现

核裂变(Nuclear Fission),又称核分裂,是一个原子核分裂成几个原子核的变化。只有一些质量非常大的原子核像铀、钍等才能发生核裂变。这些原子的原子核在吸收一个中子以后会分裂成两个或更多个质量较小的原子核,同时放出两个到三个中子和很大的能量,又能使别的原子核接着发生核裂变,使过程持续进行下去,这种过程称作链式反应。原子核在发生核裂变时,释放出巨大的能量称为原子核能,俗称原子能。1 吨铀-235 的全部核的裂变将产生2 万兆瓦小时的能量(足以让20 兆瓦的发电站运转1000 小时),与燃烧300 万吨煤释放的能量一样多。

1934年,费米等人用中子照射铀,企图使铀核俘获中子,再经过β 衰变得到原子序数为93 或更高的超铀元素,这引起了不少化学家的关注。在1934—1938年间,许多人做了这种实验,但是不同的研究者得到了不同的结果,有的声称发现了超铀元素,有的却说得到了镭和锕。1938年,奥托·哈恩和斯特拉斯曼做了一系列严格的化学实验来鉴别这些放射性产物,结论是:所谓的镭和锕实际上是原子量远比它们小的镧和钡。对这种现象,只有假设原子核分裂为两个或两个以上的碎块才能给予解释。这种分裂过程被称为裂变。

裂变释放能量是因为原子核中质量-能量的储存方式以铁及相关元素的核的形态最为有效。从最重的元素一直到铁,能量储存效率基本上是连续变化的,所以,重核能够分裂为较轻核(到铁为止)的任何过程在能量关系上都是有利的。如果较重元素的核能够分裂并形成较轻的核,就会有能量释放出来。然而,很多这类重元素的核一旦在恒星内部形成,即使在形成时要求输入能量,它们也是很稳定的。不稳定的重核,比如铀-235 的核,可以自发裂变。快速运动的中子撞击不稳定核时,也能触发裂变。由于裂变本身释放分裂的核内中子,所以如果将足够数量的放射性物质(如铀-235)堆在一起,那么一个核的自发裂变将触发近旁两个或更多核的裂变,其中每一个至少又触发另外两个核的裂变,依此类推而发生所谓的链式反应。这就是称之为原子弹(实际上是核弹)和用于发电的核反应堆(通过受控的缓慢方式)的能量释放过程。对于核弹,链式反应是失控的爆炸,因为每个核的裂变引起另外好几个核的裂变。对于核反应堆,反应进行的速率用插入铀(或其他放射性物质)堆的可吸收部分中子的物质来控制,使得平均起来每个核的裂变正好引发另外一个核的裂变。

裂变是核的大形变集体运动的结果,弄清它的机制,了解裂变过程的各种复杂的现象,到现在仍然是一个需要继续努力研究的方向。因此对于核物理本身,裂变也具有很重要的意义。此外,自发裂变是决定最重的那些核素的稳定性的重要因素;裂变产物提供了大量的丰中子远离β稳定线的核素;裂变研究又提供了原子核在大形变条件下的各种特性(如变形核的壳效应)等。所有这些都说明裂变是核物理的一个重要研究领域。

除了巨大的核能在军事和能源方面的实际应用之外,随着反应堆的建立,放射性同位素开始大规模生产并广泛应用于工农医等各部门。从发现衰变到掌握原子能,是20世纪科学史上的重要一页。

重核在裂变时生成的核,在释放瞬发中子前,称为裂变碎片,释放瞬发中子后的核称为裂变产物,裂变产物又可分为未经β 衰变的初级裂变产物和经过一次以上β 衰变的次级裂变产物。β 衰变不影响核的质量数,因此在讨论裂变产物的质量时不必区分这两种情况。

实验上可以用下述方法来确定裂变碎片的质量分布:同时测两个碎片的动能(或速度),再按能量守恒定律、动量守恒定律加上发射中子的校正,计算碎片的质量。为了确定释放中子后的裂变产物的质量分布,即产额曲线,常通过用放射化学方法进行元素分离,测量它的标识放射性射线能量及半衰期(见放射性)来确定。

1904年,奥托·哈恩[10]从镭盐中分离出一种新的放射性物质——射钍。以后又发现了射锕、新钍1、核裂变新钍2、铀Z、镤和一些被称为放射性物质的核素,为阐明天然放射系各核素间的关系起了重要作用。

图97 奥托·哈恩

哈恩的重大发现是“重核裂变反应”。20世纪30年代以后,随着正电子、中子、重氢的发现,放射化学迅速发展到一个新的阶段。科学家纷纷致力研究如何使用人工方法来实现核嬗变。正当哈恩和梅特涅一起致力这一研究时,第二次世界大战爆发了。德军占领奥地利后,梅特涅因是犹太人,为躲避纳粹的疯狂迫害,只得逃离柏林到瑞典斯德哥尔摩避难。哈恩虽失去了臂膀,但并未放弃这方面的努力,他与另一位德国物理学家弗里茨·斯特拉斯曼合作,又开始了新的尝试和探索。1938年年末,当他们用一种慢中子来轰击铀核时,竟出人意料地发生了一种异乎寻常的情况:反应不仅迅速强烈、释放出很高的能量,而且铀核分裂成为一些原子序数小得多的且更轻的物质成分。起初哈恩虽然意识到这不是一般的放射性嬗变,但也不敢肯定这就是裂变。他把实验结果和自己的想法写信告诉了梅特涅,却得到了她的有力支持。她在复信中明确指出:“这种现象可能就是我们当初曾设想过的铀核的一种分裂。”后来,哈恩经过多次试验验证,终于肯定了这种反应就是铀-235 的裂变。核裂变的意义不仅在于中子可以把一个重核打破,关键的是在中子打破重核的过程中,同时释放出能量。核裂变的发现无疑是释放原子能的一声春雷。在此之前人们对释放原子能的争议中,怀疑论者还占上风,不少人以为要打破原子核,需要额外供给强大的能量,根本不可能在打破的过程中还能释放出更多的能量。而铀核裂变的发现,当时就被认为“以这项发现为基础的科学成就是十分惊人的,那是因为它是在没有任何理论指导的情况下用纯化学的方法取得的。”

尽管当时奥托·哈恩发现核裂变还没有他的同胞伦琴教授发现X 线的影响大,但就其对于改变人类生活与发展所产生的影响而言,核裂变的意义更为重要,是近代科学史上的一项伟大突破,它开创了人类利用原子能的新纪元,具有划时代的深远历史意义。奥托·哈恩也因此荣获1944年诺贝尔化学奖。